
Mastering React Native Application Pentesting: A Practical Guide
>>

< / >921

Mastering React Native Application Pentesting: A Practical Guide

About the Author and Contributor

Vedant is an infosec enthusiast
with over four years of experience in
Mobile & Web application pentesting.
He enjoys diving into new areas of

research and creating CTF
challenges, particularly in the

mobile application security domain.

He has experience working on
various mobile application assess-
ments including native, hybrid, and

cross-platform applications, and has
performed assessments on various
Android and iOS mobile applications
for vulnerabilities and security flaws.

Senior Security Consultant
Mobile Tower - Payatu

Content and Media Strategist
- Payatu

Tanvi is a Content and Media
Strategist with a special foray

into technology. With an MBA in
Marketing, Tanvi is well equipped

to develop memorable content
collaterals, where technology

comes easy to her!

At Payatu, you will find her working
with the tech team to help them
enrich their copies and assets,
before they are rolled out to the
general public. A lot of her time
here is spent understanding the
cybersecurity arena and penning

things down in a distinct reflective
manner.

Vedant Wayal Tanvi Tirthani

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >923

Table of Contents

Introduction...

Chapter 1. What is React Native?..

Chapter 2. The Bridge Concept..

Chapter 3. Reverse Engineering React Native Apps..

Chapter 4. How to Find out if the Application is Built on React Native?..

Chapter 5. The Fun Part - Attack Surfaces Static Analysis..

Chapter 6. Editing and Patching React Native Application...

Chapter 7. Modifying Hermes bytecode...

Chapter 8. SSL Certificate Pinning Bypass..

Chapter 9. Identify Manually Installed npm Packages...

Chapter 10. React Native npm Package CVEs Walkthrough..

Final Thoughts...

About Payatu..

1

4

10

13

18

25

41

49

71

76

83

88

90

Mastering React Native Application Pentesting: A Practical Guide

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >921

Introduction

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >922

Nowadays, there is an emergence of cross-platform hybrid applications on a large
scale. Many top organizations are adapting different frameworks to develop or even
entirely rewrite their mobile applications.

In this wave, React Native framework is gaining popularity for building cross-plat-
form mobile applications. Began as a hackathon project, React Native is designed on
Facebook’s React JavaScript toolkit, which extends the capabilities of the platform
to native mobile app development.

What to expect from this ebook?
Apart from usual Android application pen-test cases, we have curated some out-of-
the-box test cases and attack surfaces that you can use while specifically pentest-
ing React Native applications.

This book covers React Native Android application’s pentesting. However, most of
the techniques can be used in iOS React Native applications as well. You will walk
through:

Introduction to React Native Framework

React Native JS code to Java Native Code Translation

React Native Application Architecture

Reverse Engineering of React Native Application

Static Analysis of React Native Android Application

Introduction

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >923

Prerequisites

It is assumed that the reader has prior knowledge about the following:

 Basic knowledge about Android applications. Below are some references to get
 started:
• Android pentesting lab
• Android pentesting tools
• Oversecured vulnerable app overview
• Getting started with Frida on Android App
• Android Security Part-1

 Basic knowledge about JavaScript and webpack bundler
 Introductory knowledge about React Native language (Core react native, JSX, Babel)

>>

>>
>>

Introduction

https://payatu.com/blog/amit/android_pentesting_lab
https://payatu.com/blog/akansha/must-have-tools-for-your-android-pentesting-toolkit
https://payatu.com/blog/rahul.kumar/oversecured-ovaa-walkthrough-part1
https://payatu.com/blog/amit/Getting%20_started_with_Frida
https://payatu.com/blog/amit/Need-to-know-Android

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >924

Chapter 1

What is React Native?

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >925

React Native is a JavaScript-based framework curated for developing native applications
on platforms like Android and iOS. Facebook initially made React Native available as an
open-source project in 2015. It quickly rose to the top of the list of tools used for mobile
application development.

Why is there a lot of buzz around the React Native
framework?
 The tagline of React Native itself is “Learn once, write anywhere.” Thanks to the fea-
ture of re-using a large chunk of code of application across different platforms, React
Native framework makes it easier to develop applications that provide a better user ex-
perience by utilizing the platform’s features along with building apps that are easier to
develop and operate on a wider range of platforms and devices.

 We can write applications for different platforms such as iOS, and Android with minor
tweaks in code as per the platform which translates into saving great time and resources.
React Native combines the best parts of native development with React, a best-in-class
JavaScript library for building user interfaces.

Cross-platform compatibility of React Native applications
Image Source: https://dev.to/goodpic/understanding-react-native-architecture-22hh

Chapter 1

https://dev.to/goodpic/understanding-react-native-architecture-22hh

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >926

Examples of React Native applications:
Some of the prominent examples of React Native apps are:

You can download the APKs of these apps and play around.

 Call of Duty Companion App DonaldDaters

 Uber Eats NerdWallet

 Wix

Why not use a hybrid application which
displays data over WebView instead of Re-
act Native?

Web+Mobile hybrid applications are capable of displaying web content using WebView in
native Android applications. Users can interact with the web content loaded inside the
WebView. However, there are challenges to this type of architecture when the application
wants to access the user’s device resources such as camera, storage, various sensors,
basic device information, etc.

React Native has made it possible to access these native features of the device along with
JavaScript besides deploying on the web. For this, utilized is a “JavaScript Bridge” con-
cept, which we will discuss in the upcoming segment of this ebook.

Chapter 1

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >927

React Native Application Architecture

React Native applications are written in a combination of JavaScript and JSX. JSX is a
special syntax extension to JavaScript. A key concept in React Native is “Component”. A
component is a piece of a user interface similar to the “Activities“ in JAVA-based android
applications. A React Native application can be made of multiple components which are
interconnected. These components are composable and reusable throughout the applica-
tion.

JavaScript to Native code translation
Image Source: https://reactnative.dev/architecture/render-pipeline

Chapter 1

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >928

How does react native JavaScript code gets
translated into the native code of the plat-
form (Android/iOS)?
React Native brings React’s declarative UI framework to iOS and Android platforms. With
React Native, you use native UI controls and have full access to the native platform fea-
tures.

As we discussed above, React Native app can have multiple components. During the com-
pilation, all of the components get compiled into one single file as demonstrated below:

Sample React Native project structure:

As you can see above; the application consists of multiple JS component files during de-
velopment. However, during compilation into APK, all the code in these multiple JS com-
ponents gets bundled into one single file i.e., “index.android.bundle”.

Chapter 1

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >929

Before understanding “How things work?”, we need to first understand “What
are those things?”

A very brief overview of the React Native application’s workflow:

 We write code in JavaScript

 This JavaScript code gets converted into Native code

Chapter 1

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9210

Chapter 2

The Bridge Concept

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9211

React Native deals with two realms, JavaScript and Native. The communication happens
between these two realms over a communication channel called the “Bridge”. As the
name suggests, it provides a literal bridge for these two realms to communicate. Bridge
provides a way for bidirectional and asynchronous communication. In short, it provides a
way of communication for completely two different technologies i.e., JavaScript and Na-
tive.

React Native bridge concept
Image Source: https://approov.io/blog/react-native-bridging-an-Android-native-module-for-app-authentication

Now coming back to “How things work?”, below is how the JS code gets translated into a
mobile application.

 React Native app is written in JavaScript + JSX.

 The Bridge sends this JavaScript code to the JavaScript core Runtime to further com-
municate with native components.

 The communication happens in multiple threads. As React Native is asynchronous,
each code and process run in different threads. For example, layout calculations happen
in one thread while native code rendering happens in another. These two threads never
communicate directly and never block each other.

 JavaScript threads communicate with Native threads via the Bridge.

 Finally, the native components of the platform communicate with iOS/Android SDK and
execute the operation instructed in the initial JS code.

Chapter 2

Android
iOS

https://approov.io/blog/react-native-bridging-an-Android-native-module-for-app-authentication

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9212

TL;DR

 React Native code ⇒ JS+JSX code written during development.

 JS core engine ⇒ Converts JS code into respective native code with the help of a
bridge between React Native and Native code.

 Bridge ⇒ Facilitates communication between JavaScript code and Native compo-
nents.

 Android/iOS native code ⇒ Runs the converted Native code on the platform and
also provides support for all native features such as camera access, sensor access, de-
vice information, etc.

Chapter 2

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9213

Chapter 3

Reverse Engineering
React Native Apps

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9214

Enough with the theory, it's time to get to real business.

Method 1: Using the APKTool:

This method will convert files such as “AndroidManifest.xml”, “classes.dex” etc files into
human-readable format. (Unlike Method 2)

Steps:

1. Install APKTOOL: https://ibotpeaches.github.io/APKtool/

2. Open cmd and type
 apktool d app.APK

3. The application will be decompiled.

Chapter 3

https://ibotpeaches.github.io/APKtool/

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9215

4. Go to “/assets/” folder. It should contain the “index.android.bundle” file.

5. If you open this file, you will find all React Native JS code in minified format.

Method 2: Using any compression tool

Chapter 3

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9216

Method 2: Using Any Compression Tool

If you directly want to decompile applications without needing any tool, Method 2 is all you
are looking for.

1. Rename the extension of APK file to .zip
2. Now open this file with any compression management tool such as winzip, 7zip

Chapter 3

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9217

3. Extract all the files in that zip and you will be able to access the files. Some of the files
will not be in a human-readable format.

Chapter 3

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9218

Chapter 4

How to Find out if the
Application is Built on
React Native?

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9219

1. Check the presence of the “index.android.bundle” file

a. Follow the steps mentioned above to decompile the application.
b. Among the extracted folders, check if the “/assets/index.android.bundle” file is present.
This confirms that the application is built on React Native.

2. Check the “com.facebook.react” string in “AndroidManifest.xml” file
a. Decompile the application using the APKtool as mentioned above.
b. Open “AndroidManifest.xml” file and search for “com.facebook.react” string.

Chapter 4

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9220

React Native APK file structure:
Let’s sneak into a release build of a sample React Native Android application.
Once decompiled, the basic React Native Android application consists of the following
contents:

 MyReactNativeApp.APK/
 assets/
 index.android.bundle
 <<Other-files>>
 com/
 kotlin/
 lib/
 META-INF/
 services/
 <<Other files>>
 MANIFEST.MF
 BNDLTOOL.RSA
 BNDLTOOL.SF
 okhttp3/
 res/
 <<layout-related-files>>
 AndroidManifest.xml
 classes.dex
 <<other files>>

Note: There are lots of files and directories in this hierarchy. However, only important files and
directories are shown in the above diagram.

Chapter 4

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9221

Let’s understand some important files and directo-
ries:
 assets/

 kotlin/

The “assets/” folder is the important directory to look for while reversing the
React Native applications. It contains assets such as fonts, .json files, .prop-
erties files, extended JavaScript files along with “index.android.bundle” file.

Contains Kotlin code files. These files contain data for declarations of
standard ("built-in") Kotlin classes which are not compiled to .class files,
but rather are mapped to the existing types on the platform (in this case,
JVM). For example, kotlin/kotlin.kotlin_builtins contains the information for
non-physical classes in package Kotlin: Int, String, Enum, Annotation, Collec-
tion, etc.

index.android.bundle: This file is the heart and soul of React Native
applications as it contains the entire core logic of the application. It’s a
JavaScript bundle file and all of the application’s JavaScript+JSX code
is compiled into this file in minified format. We will learn more about
this file in upcoming sections.

Chapter 4

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9222

 META-INF/
This directory is also one of the important directories while reversing React
Native applications. The META-INF folder contains the manifest information
and other metadata about the java package carried by the jar file.

This means it also contains application signing-related files such as men-
tioned below. We will come back to this folder again in the pentesting part of
the article.

MANIFEST.MF
• It contains various information used by the java run-time environ-

ment when loading the jar file, such as which is the main class to
be run from the jar file, the version of the package, build number,
creator of the package, security policies/permissions of java applets
and java webstart packages, the list of file names in the jar along
with their SHA1 digests, etc.

BNDLTOOL.RSA
• This contains the list of all files along with their SHA-1 digest.
BNDLTOOL.SF
• This contains the signed contents of the CERT.SF file along with the

certificate chain of the public key used for signing the contents.

Chapter 4

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9223

 res/

 AndroidManifest.xml

Contains all non-code resources, such as XML layouts, UI strings, and bitmap
images, divided into corresponding sub-directories.

AndroidManifest.xml is one of the most important file in any android applica-
tion. If you know even a little bit about android app pentesting, you may know
the importance of this file. The AndroidManifest.xml file contains information
about your package, including components of the application such as activi-
ties, services, broadcast receivers, content providers, etc.

While developing and compiling React Native applications, this file is auto-
matically generated by Gradle. Therefore, some of the configurations in this
file are vulnerable by default. We will check this file out later in the pentest-
ing part.

Chapter 4

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9224

 classes.dex
Even if the React Native applications are written in JavaScript, when they
get translated into the android application, Java bytecode code is generated
automatically to run the application using ART. This file contains the Dalvik
bytecode of this Java bytecode.

You may find multiple classes.dex files in the apk because of the limitation of
dex size (65K) for a single dex file. Multidexing is used in this situation and
that’s why you will find multiple dex files in the apk.

Chapter 4

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9225

Chapter 5

The Fun Part - Attack
Surfaces & Static
Analysis

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9226

Sensitive information in the “index.android.bundle”
file
What is the “index.android.bundle” file?

In React Native, App.js acts like Main.java. When React Native apps get com-
piled into an APK file, the React Native index files and components get con-
verted into JS code via JS bridge.

In React Native applications, all of the JavaScript code written in the project
gets compiled into the “index.android.bundle” file when the application is built.
Thus, this file contains all of the JavaScript code of the application in minified
format.

When you decompile the React Native apk, the contents of the main ‘App.js’
file and all other components will be bundled together in JS format in the “in-
dex.android.bundle” file as mentioned above. This means the “index.android.
bundle” file contains all of the source code of React Native application. We
can search for hardcoded stuff in this file.

Steps:

1. Decompile application using APKtool.
2. Locate “index.android.bundle” file in /assets folder.
 /<appfolder>/assets/

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9227

There is a lot of sensitive information that might be hardcoded in the application compo-
nent files which later gets compiled into the “index.android.bundle” file. We will look at
some types of information that we can find in this file.

1. Hardcoded credentials and tokens:

The poor management of the credentials and tokens is a naïve mistake that we find hap-
pening in lots of Android applications. The React Native application is no exception. In fact,
hardcoding of the stuff is much higher in React Native as compared to regular native Java
apps, and “index.android.bundle” is a goldmine for the hardcoded stuff.

You can search for keywords such as “secrets, tokens, password, apikey, username, login”
etc. to find such goofy hidden secrets in the “index.android.bundle” file.

2. Third-party database credentials:

Most React Native applications use third-party databases such as firebase to store in-
formation. There have been numerous instances of hardcoding credentials of these
third-party databases. Lots of credentials are too permissive within their React Native
application.

The following keywords can be used to grab these credentials within the target React
Native application:

apiKey
FIREBASE_API_KEY
endpoint
storageBucket

FIREBASE_API_KEY
aws
firebase
databaseURL

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9228

3. Hidden backdoors and URLs

Developers tend to add backdoors or URLs in the code for various purposes such as de-
bugging, shortcuts to the functionality for convenience, etc. Sometimes they forgot to re-
move those URLs, and shortcuts while deploying built to the productions. We can scratch
through the file to find these hidden URLs and shortcuts.

The “index.android.bundle” file contains the core code of the application. Thus, sometimes
this file can be huge to analyse. We can be more creative with custom keywords depend-
ing upon the type of application, technology, frameworks used in the application, etc.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9229

Splitting “index.android.bundle” code into multiple JS com-
ponents

As we saw above, all of the JS code is crunched into one “index.android.bundle” file. Nav-
igating through this bulk code is a headache. Fortunately, there is a way to break down
this bundle code into multiple JS files with the help of the following npm module.

react-native-decompiler

Steps:

1. Install above mentioned “react-native-decompiler” module. Check the installation in-

struction in the URL of the module above.

2. Unzip the contents of the vulnerable application into a folder and go to the “assets”
folder.

3. Now open command prompt in “assets” folder and type following command:

npx react-native-decompiler -i ./index.android.bundle -o ./out-
put

4. Wait for the process to complete and the “index.android.bundle” file will be decompiled
into multiple JS modules in the “output” folder.

5. Unfortunately, most of the React Native android application does not generate source-
map file unlike React js web applications. Thus, we have to manually navigate through
various components of the application.

Chapter 5

https://www.npmjs.com/package/react-native-decompiler

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9230

Navigating through multiple decompiled JS modules:

You got decompiled JS files but things are still messy. Let's simplify things. We will navi-
gate through these files to reach to right code.

Steps:

1. Once you decompile the “index.android.bundle” file, you will see multiple .js files in the
“output” folder. We can start with “0.js” file. Consider this file as main component file of
the application. (App.js)

2. Open this file and check which files are imported in the beginning of the file. It should
look like the below:

or in case of multiple imported components:

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9231

1.
2.
3. We can spot these files from the list of multiple .js files.

4. Open this file and you will see the bundled JS code (bundled via webpack).

Decompiling Hermes bytecode
As we saw above, the “index.android.bundle” file contains the core logic of the entire ap-
plication. Thus, the React Native team created their own JavaScript engine called Hermes.
This engine is used to run React Native applications. The JS source code is often compiled
into the Hermes bytecode, obstructing JS code to some extent.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9232

What is Hermes?

Hermes is an open-source JavaScript engine optimized for React Native. For many apps,
enabling Hermes will result in improved start-up time, decreased memory usage, and
smaller app size. Refer: https://reactnative.dev/docs/hermes

Thus, when you decompile the React Native application that uses Hermes during compi-
lation, the code in the file “index.android.bundle” will be converted into Hermes byte. The
contents of the file will look like this:

Fortunately, there is a way to convert this mess into a human-readable format. Shoutout
to: *https://github.com/bongtrop* for creating hbctool. This tool lets us disassemble en-
crypted bundle file back to Hermes instruction set which is in human-readable bytecode.

Chapter 5

https://hermesengine.dev/
https://reactnative.dev/docs/hermes
https://github.com/bongtrop*

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9233

Pre-requisite:

hbctool: https://github.com/bongtrop/hbctool

Challenge APK: https://github.com/ErbaZZ/hermes-reversing-lab/blob/main/HermesRe-
versingLab.APK

Steps:

1. Decompile APK and go to the “/assets” folder.

2. There you will find the “index.android.bundle” file.

3. Install the hbctool with the following command
 pip install hbctool

4. Open the command terminal in the “/assets” folder and type the following command to
disassemble Hermes bytecode into human-readable format:
 hbctool disasm <index.android.bundle> <output_folder_name>

5. A folder will be created containing disassembled Hermes bytecode. Now go to the out-
put folder (dis_code)

metadata.json: stores the important information of Hermes bytecode file

instruction.hasm: stores the application instructions or logic in HASM
format (edit application logic in this file)

string.json: store the application strings or texts (edit strings in this file)

Chapter 5

https://github.com/bongtrop/hbctool
https://github.com/ErbaZZ/hermes-reversing-lab/blob/main/HermesReversingLab.apk
https://github.com/ErbaZZ/hermes-reversing-lab/blob/main/HermesReversingLab.apk

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9234

6. Open the “instructions.hasm” file and analyze instructions sets.

7. You can find secrets that are stored in String constants by searching for specific key-
words such as password, tokens, secret, apikey etc.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9235

8. You can use keyword: Oper[1]: String(to grep all of the strings in the bytecode.

Hermes is a custom JavaScript engine created by Facebook. Therefore, the only way to
understand this bytecode is to analyse the code patterns. We will see how to read and
understand Hermes code in dynamic exploitation in the upcoming chapters.

Grabbing files stored using AsyncStorage

What is AsyncStorage in React Native?

According to the official react native document-

AsyncStorage is an unencrypted, asynchronous, persistent, key-value storage system
that is global to the app. It should be used instead of LocalStorage.

AsyncStorage is also asynchronous, i.e., its methods run concurrently with your code.
It is also persistent, meaning that the stored data will always be available globally even if
you log out or restart the application.

Chapter 5

https://reactnative.dev/docs/asyncstorage

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9236

When it becomes a concern?

The data which is stored via AsyncStorage is unencrypted, thus data stored is accessible
to anyone with access to the device who can get this data in cleartext. If the application is
storing any such credentials of services, user’s session token, passwords, or any other
sensitive information via AsyncStorage, then it is easy to access this data for an attacker
with access to the device.

Where do these files get stored on the device?

On Android, AsyncStorage will use either SQLite or RocksDB based on availability. You
can find the databases in the following location:

/data/data/<Your-Application-Package-Name>/databases/<your-data-
base-name>

How to Test:
Steps:

1. Install the vulnerable app on the emulator/physical device and make sure data is get-
ting stored in AsyncStorage.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9237

2. Run the following command to run ADB daemon as root:
 adb root

3. Access the shell of the device via adb shell

4. Navigate to the databases folder of the application
 cd /data/data/<com.your.package>/databases

5. You will find 3 files in this folder. You can check the contents of each file with
 strings RKStorage
 strings RKStorage-wal
 strings RKStorage-shm

6. You will be able to see data stored in AsyncStorage in cleartext.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9238

Sensitive information in XML files
In Android applications, XML files play important roles in defining layouts of components,
storing recurring strings, providing ids to the assets, etc. Developers sometimes store
sensitive information in these XML files in plaintext. We can go through these XML files to
find hardcoded secrets of the application.

Strings.xml

While looking for sensitive information in XML files, “Strings.xml” should be the first
place to look for. For convenience, developers might include frequently needed sensitive
information such as credentials, static tokens, passwords, secrets, and hidden URLs in
the Strings.xml file which later can be referenced within the application. This file can be
located in the "/res/values/" folder of the decompiled application.

AndroidManifest.xml

The “AndroidManifest.xml” file contains information on the application package, including
components of the application such as activities, broadcast receivers, services, content
providers, etc. This file may contain some sensitive hardcoded strings such as keys, se-
crets, tokens, etc.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9239

Uncovering unencrypted HTTP data in the cache

Why is there HTTP data in the cache folder?

Android applications can keep all kinds of stuff in the cache folder of the package. This
helps to boost the performance of the app. However, sometimes due to misconfiguration,
the application may save sensitive information in the cache folder, more specifically in the
“http-cache” folder.

In the React Native applications, “http-cache” contains the GET-based HTTP request+re-
sponse data. This may expose sensitive data if it is being transferred over an unencrypted
or insecure channel.

Limitations of data in the http-cache folder:

1. Only “GET” based HTTP request+response data is stored in the cache folder of the
application. Post request data is not cached in the cache folder.

2. Only unencrypted (non-https) requests are cached in plaintext. If the URL is having SSL
certificate implemented, then the data will be cached in an encrypted format.

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9240

Exploit scenario of http-cache folder:

1. Any GET HTTP request is saved in this folder. If the application is sending sensitive data
such as OAuth tokens, credentials, etc. over the GET request type, then we can grab that
data in plaintext.

2. Both request and response headers and their values are cached in plaintext. Thus, if
the application is sending any sensitive information in request/response headers of the
GET request, we can grab that data.

How to test?

1. Open the vulnerable application which has the feature to transfer data in HTTP requests
and issue some HTTP requests.

2. Open a command prompt and start the ADB server as root with the following
command
adb root

3. Now access the shell of the device with adb shell and navigate to the following di-
rectory
/data/data/<com.package.name>/cache/http-cache

4. Open all files in this folder with cat * and you can now scrap through cached data

Chapter 5

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9241

Chapter 6

Editing and Patching
React Native
Application

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9242

Modifying and patching React Native applications is relatively easier than Java native
Android applications. As we already learned, when an APK of React Native project is built,
all of the React Native JavaScript code gets compiled into one single file i.e. “index.an-
droid.bundle”.

We have to find the correct piece of code in the “index.android.bundle” file and then we
can modify the code right away. We can find the code block by searching for specific key-
words which we can find in the application. For example, we can search for text (like the
text on the button, touchableopacity, etc.) shown in the UI of the application to find specific
functions associated with that text.

We can utilize the react-native-decompiler module to analyze the code more efficiently
and then later modify it by referencing it into “index.android.bundle”.

Steps:

There are several ways to edit and patch the React Native Android application. Below are
the two most effective methods demonstrated. You can go with any method as per conve-
nience.

Method 1: Modification using any simple compression tool

1. Open the installed application and you will notice that the counter only increases by 5
digits.

Chapter 6

https://www.npmjs.com/package/react-native-decompiler

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9243

2. Change the extension of the vulnerable APK to “.zip”

3. Open zip in winzip and open /assets/index.android.bundle. Note that, you have to open the
zip file in WinZip. Extracting and again compressing zip might throw an error.

5. As per our challenge, we have to change the counter value to 1337. Thus, we will
change the increment value from 5 to 1 so the counter will increase only by 1 digit per
button click.

Tip:Tip: You can search in code with custom keywords that you see in the application. You can search in code with custom keywords that you see in the application.
Usually, the “hand-written” code can be found at bottom of this file.

Chapter 6

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9244

6. Now, we have to delete previous signing certificates. Go to the “META-INF” file and de-
lete the following files:
 1. CERT.RSA
 2. CERT.SF
 3. MANIFEST.MF

7. Exit the “winzip” app and rename the file extension back to “.APK”

8. Now we need to sign the modified APK with a new certificate. To generate custom cer-
tificate, run following command and fill out the details:
keytool -genkey -v -keystore <keystore_name>.keystore -alias <keystore_
alias_name> -keyalg RSA -keysize 2048 -validity 10000

Chapter 6

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9245

9. We will sign our APK with the generated keystore. Run the following command and en-
ter keystore password that is set while creating keystore in step 6.
jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
<my-keyname>.keystore
<modify.APK> <alias_name>

10. Install the modified APK with adb.
 adb install modified.APK

11. The modified application will be successfully installed.

Chapter 6

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9246

Method 2: Modification using APKtool:

1. Open the installed application and you will notice that the counter only increases by 5
digits.

2. Run the following command to decompile the application with APKTool:

APKtool d VulnerableApp.APK

3. Go to “/VulnerableApp/assets” folder and open the “index.android.bundle” file

4. Search for the keywords such as “Increase by 5” and then search for the “onPress”
function. You can copy the entire code and beautify it for convenience.

Chapter 6

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9247

Tip: You can search in code with custom keywords that you see in the application.
Usually, the “hand-written” code can be found at bottom of this file.

5. Change the counter value from “5” to “1” in the “index.android.bundle” file.

6. Save this file and run the following APKTool command:
APKtool b VulnerableApp

7. Modified APK will be generated in the “/VulnerableApp/dist” folder.

8. Go to this folder and create a keystore with the following command:

keytool -genkey -v -keystore <keystoreName>.keystore -alias <key-
storeAlias> -keyalg RSA -keysize 2048 -validity 10000

Chapter 6

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9248

9. Sign the APK with “jarsigner”.

jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
<keystoreName>.keystore VulnerableApp.APK <keystoreAlias>

10. Install the signed application with:
adb install VulnerableApp.APK

11. Open the application and you will be able to increase the counter by 1 digit now.

Note: You can use either methods demonstrated above to modify and patch the React Na-
tive application.

Chapter 6

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9249

Chapter 7

Modifying Hermes
Bytecode

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9250

When you decompile the React Native application that uses Hermes during compilation,
the code in the “index.android.bundle” file will be converted into Hermes code. The con-
tents of the file will look like this:

Understanding Hermes bytecode
As of now, there is no way to convert disassembled Hermes bytecode to readable JavaS-
cript code. We have to understand the bytecode in bits and pieces in order to modify the
behavior of a specific function and eventually of the application. The bytecode consists of
a bunch of constants and functions which make up the logic of the application.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9251

Let's look at some key elements in the Hermes bytecode
and try to make some sense:

 Oper[1]: String(strNumber) This constant contains all strings either added by
the user during development or strings of various JS libraries. But most of the time, this
constant contains strings that we should look for. Examples of the strings are below:

Tip: Always search from the bottom of the “instructions.hasm” file to find strings
that are added by the developer during development.

 createElement: “createElement” string value refers to the JSX element which is
created in React Native. Refer below side by side comparison of the JSX code and the
Hermes bytecode:

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9252

 LoadConstInt: This element stores all integer values created within the application.

 Relational Operators identification:

The instruction code has different keywords for relational operators. Below are some of
the important keywords of relational operators and their meanings.

Keyword Operator Meaning
JEqual == Equal to
JNotEqual != Not equal to
JLess < Less than
JGreater > Greater than
JLessEqual <= Lesser or equal than
JGreaterEqual >= Greater or equal than

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9253

Keyword Operator Meaning
JNotLessEqual !<= Not lesser or equal than
JNotGreaterEqual !>= Not greater or equal than
JEqualLong == Equal to long data type
JNotEqualLong != Not equal to long data type
JStrictEqual === Strict Equal to
JStrictNotEqual !== Strict not equal to

 Find a function name with a string: We can search for any specific function with the
help of a string.

o For example, look at the application screenshot below:

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9254

o We can search with any keyword in the string shown in the screenshot below:

o Copy the ID of the function as shown above and search for this ID in the file.

o You will get the name of the function. For reference, here is side by side compari-
son of React Native JSX code and Hermes bytecode

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9255

The Comparison:

o This way we can link any function with its properties.

React Native JSX code of “onIncrement”
function:

Hermes Bytecode of the “onIncrement”
function:

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9256

If you want to learn more about Hermes bytecode, there is a great playground for it:
hermesengine.dev

Now, let's disassemble/assemble the obfuscated code into bytecode.

Steps:

Note: We will solve a challenge created by “bongtrop”. More info here: “suam.wtf”

1. Install the vulnerable application and you will get the following screen:

Chapter 7

https://hermesengine.dev/playground/
https://twitter.com/bongtrop
https://suam.wtf/posts/react-native-application-static-analysis-en/

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9257

2. We have to increase counter value to 1337 in order to get the flag. But if we do try to
increase the counter value with the “+” button at the bottom, we get the following error:

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9258

3. This means we have to directly set the counter value as 1337.

4. Change the extension of .APK file to .zip and open this file with winzip.

5. Go to the “/assets/” folder and copy the “index.android.bundle” file in any folder on the
system.

6. If you open this file, you will find a gibberish code.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9259

7. Let’s convert this mess into a bytecode. Install hbctool with the following command:
 pip install hbctool

8. Open command prompt in folder where “index.android.bundle” file is pasted and run the
following command to disassemble the file:

//hbctool disasm <path-to-index.android.bundle> <output-folder>
hbctool disasm index.android.bundle output

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9260

9. Go to the “output” folder created and there you will find “instructions.hasm” file. You will
find all the React Native application’s JS code in bytecode format.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9261

10. As we have to increase the counter value to 1337, first find the function that deals with
the counter value. We can search with keywords of the error “Increase button has already
been broken.”

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9262

11. As observed above, the counter breaks when we try to increase the counter value be-
yond 10. Thus, the application is performing a “Relational operation” to verify if the counter
value is greater than 10 or not.

12. Instead of increasing the value of the counter, we can change target value i.e. 1337 to 4.
For this, we have to find the relational operator in the same function which is checking if
the counter value is greater than 1336 or equal to 1337 or not.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9263

13. We have found a relational operation that is saying if the counter value reaches 1336 or
above, then decrypt and alert the flag. (Note that the flag is encrypted in this case). Thus,
we can change this value from 1336 to 10 or less. We are changing it to 4 here.

o This means, if the counter value reaches greater than 4 then we will get the flag.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9264

14. Save this file after making any changes and open the “.zip” file of the APK.

15. Now, we need to assemble the index file back to Hermes bytecode format.

16. Open a command prompt and run the following command:
 //hbctool asm <folder-with-instructions.hasm-file> index.An
 droid.bundle

 hbctool asm output index.android.bundle

17. Go to “/assets” folder. Delete the original “index.android.bundle” file and paste this
newly created file there.

18. As usual, we also need to remove the signature files. Go to the “/META-INF” folder and
remove the following files:
o CERT.RSA
o CERT.SF
o MANIFEST.MF

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9265

19. Exit the “winzip” app and rename the file extension back to “.apk”

20. Now we need to sign the modified APK with the certificate. To generate a custom cer-
tificate, run the following command and fill out the details:
keytool -genkey -v -keystore <keystore_name>.keystore -alias <key-
store_alias_name> -keyalg RSA -keysize 2048 -validity 10000

21. We will sign our APK with the generated keystore. Run the following command and
enter the keystore password that is set while creating the keystore in step 6.
jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
<my-keyname>.keystore <modify.APK> <alias_name>

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9266

22. Install the modified APK with adb and the modified APK file will successfully get in-
stalled.
adb install <modified.APK>

23. Increase the counter value by tapping “+” button 5 times and you will get the flag.

Understanding and analysing the Hermes bytecode can be a hassle. However, there are
certain patterns in the bytecode that help us understand the flow of the functions, meth-
ods, and constants.

Root detection bypass
In React Native applications, the JailMonkey npm package is widely used for detecting
rooted Android devices. It is also used to detect mocked locations, hooking statuses, and
some basic integrity checks of the device.

What is JailMonkey?

JailMonkey is a third-party npm package that provides functionality to check or detect
whether the device is rooted or not. It utilizes API “isJailBroken” to check the root status

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9267

of the device by checking various pieces of information throughout the device such as
whether “su” binary exists in the device, whether “busybox” is installed, alternate paths
for “su” binaries. etc.

We can bypass this check by modifying the “isJailBroken” function in the “index.android.
bundle” file. The steps to do it are shown below.

Note: Always try to modify the function instead of removing it altogether as there might
have been some references in rest of the code.

Steps:
1. Open the vulnerable application and you will see it detecting the root status of the de-
vice.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9268

2. Now change the extension of the APK file from “.apk” to “.zip” and open this file with any
file compression tool such as 7z, winzip.

3. Open “/assets/index.android.bundle” file and search for isJailBroken keyword. You can
search the below keyword for reaching the correct code line:
isJailBroken: function()

4. Modify the function as shown below:

We are modifying the function such that it returns a “false” boolean value to the “isJail-
Broken” function.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9269

5. Go to the “META-INF” folder and delete the following files
 1. CERT.RSA
 2. CERT.SF
 3. MANIFEST.SF

6. Change file extension back to “.APK” and run the following command to generate the
keystore file,
keytool -genkey -v -keystore <keyStoreName>.keystore -alias <keySto-
reAlias> -keyalg RSA -keysize 2048 -validity 10000

7. Now sign the APK with the newly generated keystore. Run the following command:
jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore
<my-keyname>.keystore
<VulnerableApp.APK> <alias_name>

8. Install the application into the device with
adb install VulnerableApp.APK

9. Open the application and you will see root detection has been bypassed.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9270

The example shown above is not limited to the shown test case. The implementation of
the “isJailBroken” function may vary. It is important to understand the function implemen-
tation to modify as per our requirement.

Bonus:

For reference, below is the actual project code snippet vs webpack compiled code.

Chapter 7

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9271

Chapter 8

SSL Certificate
Pinning Bypass

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9272

What is SSL certificate pinning?

You might already be aware of SSL certificate pinning in the Android application. SSL
certificate pinning in short is a process of associating a host with its expected X509 cer-
tificate or public key.

In certificate pinning, the application is configured to accept only the certificate of a spe-
cific domain instead of any trusted CA root certificate in the device (such as PortSwigger
CA certificate).

SSL pinning flow diagram
source: https://www.indusface.com/learning/what-is-ssl-pinning-a-quick-walk-through/

Bypassing certificate pinning with Frida

Frida by codeshare is the go-to tool to bypass the certificate pinning in runtime. The fa-
mous “Universal Android SSL Pinning bypass script” also works great with React Native
applications. You can refer to the article below to perform a pinning bypass like a normal
Android application:
"Hail Frida!! The Universal SSL pinning bypass for Android applications"

But.

What if due to any circumstances, we are not able to dynamically hook the application and
bypass certificate pinning or we want to permanently bypass the certificate pinning?

Chapter 8

https://www.indusface.com/learning/what-is-ssl-pinning-a-quick-walk-through/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://infosecwriteups.com/hail-frida-the-universal-ssl-pinning-bypass-for-android-e9e1d733d29

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9273

Manually Patching React Native application to bypass cer-
tificate pinning

The most used technique to implement certificate pinning in React Native applications
is by utilizing the “react-native-ssl-pinning” node module. The major disadvantage (per-
haps an advantage for us) of certificate pinning in React Native applications is that the
pinned certificate can be found in the “/assets” folder of the application. Hence an attack-
er having control over this certificate completely demolishes the certificate pinning im-
plementation.

Steps:
1. Change the extension of the .apk file to .zip and open the zip file in any compression tool
such as WinRAR or 7zip.

2. Go to the “/assets” folder and note the name of .cer certificates.

3. Delete all “.cer” certificates from the “/assets” folder.

4. Now configure BurpSuite with an Android device and generate a .der certificate from
BurpSuite.

Chapter 8

https://www.npmjs.com/package/react-native-ssl-pinning

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9274

5. Change the certificate extension from “.cer” to “.der” and rename the newly generated
“.cer” certificate from BurpSuite with the name copied in step 2.

6. Paste these new certificates in the “/assets” folder.

7. Delete files in META-INF and sign APK as instructed earlier.

Chapter 8

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9275

8. Install the application and intercept the encrypted HTTP traffic.

Chapter 8

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9276

Chapter 9

Identify Manually
Installed npm
Packages

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9277

React Native provides a set of built-in Core Components and APIs ready to use in the app.
We are not limited to these built-in packages, as React Native has a community of thou-
sands of developers. If the core packages don't have what we are looking for, we may be
able to find and install a library from the community to add the functionality to our app.

React Native packages are typically installed from the npm registry using a Node.js pack-
age manager such as npm CLI or Yarn Classic.

Application may use some of the packages which are either outdated or contains critical
vulnerabilities. Either way, we can identify these packages to find any known vulnera-
bilities/loopholes in them which can help in our exploitation journey of the React Native
applications. Below are the two types of npm packages we can find in the React Native
application.

Types of npm packages in React Native application:
1. Pre-installed:

 Pre-installed npm packages are those packages that get installed during the project
creation of a new React Native application. These packages are core packages that pro-
vide basic features for any React Native application.

 Examples of pre-installed packages are “StyleSheet, AsyncStorage, FlatList, TextInput”
etc.

 Usually, these pre-installed packages can be found at the beginning of the “index.an-
droid.bundle” file. We can search for the following exact keyword to find the list of pre-in-
stalled npm packages: m.exports = {

Chapter 9

https://reactnative.dev/docs/components-and-apis
https://www.npmjs.com/
https://www.npmjs.com/
https://docs.npmjs.com/cli/npm
https://classic.yarnpkg.com/en/

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9278

 The very first instance of the above-mentioned keyword contains the list of pre-in-
stalled npm packages.

 We can scroll down to see the entire list of pre-installed npm modules in the “m.ex-
port” array.

Chapter 9

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9279Chapter 9

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9280

2. Manually installed:

 Contrary to the pre-installed npm packages, manually installed npm packages are
installed manually during the development phase of the React Native application. This
means these packages do not come pre-installed when React Native application creation
is initialized.

 These packages are created and released by awesome community members of React
Native and can be found on "npmjs.com”

 As mentioned above, manually installed packages get installed during the development
phase of a product, or the application team may install a single or number of packages as
per their convenience.

 For example,

 “Stark Technologies” want to implement root detection in its React Native appli
 cation. Thus, it may use the “jail-monkey” package.

 “Pym Technologies” want to implement SSL pinning in its React Native applica
 tion. Thus, it may use the “react-native-ssl-pinning” package.

 On another side, “S.H.I.E.L.D. Technologies” want to implement both, root detection
 & SSL pinning. Thus, it may use both the “jail-monkey” and “react-native-ssl-pin
 ning” npm packages.

 We can find these packages in “index.android.bundle” file with the following keyword:
NativeModules

Chapter 9

https://www.npmjs.com/
https://github.com/GantMan/jail-monkey
https://www.npmjs.com/package/react-native-ssl-pinning

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9281

 Here we can see that we have manually installed and used 3 packages:
 - JailMonkey which is “jail-monkey”
 - RNSslPinning which is “react-native-ssl-pinning”
 - RNCWebView which is “react-native-webview”

Searching for any known CVEs or vulnerabilities on
found packages:

1. Once we identify a list of packages, we can search for more information on these pack-
ages with following example keyword:

//NativeModules.<moduleName>
NativeModules.JailMonkey

Chapter 9

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9282

2. Unfortunately, there is no way to identify the version details of the packages used in
vulnerable React Native applications. However, we can search for any known CVEs or vul-
nerabilities, or open issues for npm package we found in the application:

//<package name> cve
jail-monkey cve

Chapter 9

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9283

Chapter 10

React Native npm
Package CVEs
Walkthrough

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9284

React Native applications are built using multiple npm modules. Some of them are offi-
cially released and maintained by Facebook, however some of them are created by com-
munity members. We will review some of the zero-day vulnerabilities identified in npm
packages specifically used to build some components of React Native applications.

1. CVE-2020-6506 Android WebView Universal Cross-
site Scripting

 A universal XSS (cross-site scripting) vulnerability has been identified in the Android
WebView system component. “react-native-webview” npm package which is used for
webview component in React Native applications is also affected as it utilizes the same
component for WebView implementation. This component allows cross-origin
iframes to execute arbitrary JavaScript.

 This UXSS vulnerability affects React Native applications which use a “react-na-
tive-webview” npm package that allows navigation to arbitrary URLs and when that app
runs on systems with an Android WebView version prior to 83.0.4103.106.

Affected npm package: react-native-webview

Affected version: 10.0.0 or below

Description:

 In the WebView component in React Native applications, setSupportMultipleWin-
dows is used to handle new windows with javascript: URLs in the same way as new win-
dows with https:// URLs, which is to navigate the top document to the provided URL. This
leads to JavaScript being executed in the top document context.

 To exploit this issue, an iframe can call windows.open()with javascript:<url> .
Successful exploitation of this attack requires a user interaction such as tap or click or
keypress because WebView requires interaction to open a new window.

Chapter 10

https://github.com/advisories/GHSA-36j3-xxf7-4pqg
https://www.npmjs.com/package/react-native-webview
https://www.npmjs.com/package/react-native-webview

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9285

Demo:

- Vulnerable: - Safe:

Images Reference: https://alesandroortiz.com/articles/uxss-Android-webview-cve-2020-6506/#sidenote-1

Mitigation:

 Ensure users update their Android WebView system component via the Google Play
Store to 83.0.4103.106 or higher to avoid this UXSS. ‘react-native-webview’ is working on a
mitigation but it could take some time.

Read more:

 https://alesandroortiz.com/articles/uxss-Android-webview-cve-2020-6506/

 https://github.com/advisories/GHSA-36j3-xxf7-4pqg

Chapter 10

https://alesandroortiz.com/articles/uxss-Android-webview-cve-2020-6506/#sidenote-1
https://alesandroortiz.com/articles/uxss-android-webview-cve-2020-6506/
https://github.com/advisories/GHSA-36j3-xxf7-4pqg

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9286

2. CVE-2020-7696 Information Exposure Affecting
react-native-fast-image
 “react-native-fast-image” npm package is an image processing component which im-
proves the image processing ability of an React Native application. It reduces flickering,
cache misses, improves performance loading from cache and performance in general.

 The affected version of this package has been vulnerable to information exposure while
rendering the image from uri. When an image with source={{uri: "...", headers:
{ host: "[somehost.com](<http://somehost.com/>)", authorization:
"..." }} is loaded, all other subsequent images will use same headers. Thus, authori-
zation token, cookies or any sort of headers will be leaked to the servers of subsequent
images.

Affected npm package: react-native-fast-image

Affected version: 8.2.2 or below

Demo:

- React Native Code:

Chapter 10

https://www.cve.org/CVERecord?id=CVE-2020-7696
https://security.snyk.io/package/npm/react-native-fast-image
https://security.snyk.io/package/npm/react-native-fast-image

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9287

- Call-back listener uri:

Mitigation:

 Upgrade “react-native-fast-image" to version 8.3.0 or higher.

Reference:

 https://www.cve.org/CVERecord?id=CVE-2020-7696

 https://security.snyk.io/vuln/SNYK-JS-REACTNATIVEFASTIMAGE-572228

Chapter 10

https://www.cve.org/CVERecord?id=CVE-2020-7696
https://security.snyk.io/vuln/SNYK-JS-REACTNATIVEFASTIMAGE-572228

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9288

Final Thoughts

Mastering React Native Application Pentesting: A Practical Guide
>>

< / >9289

In the past few years, we have seen a huge expansion of new technologies in mobile
application development. While it is hard to keep up with everything going at a “mach-10”
speed, it is important to figure out the differences between the technologies to hit hard
at the weakest link within them. React Native framework is evolving with full thrust due
to Facebook and the support of a strong community. So, it becomes crucial to identify the
pain points of this framework.

We as pentesters are always curious about new technologies and it’s no different in the
case of React Native. The technology is still new and needs more research, trial & error,
to uncover the nastiest loopholes for the purpose of exploiting them for fun and profit.

Also, we have released two React Native CTF applications which you can find below:

1. VulnerableRN.apk (Without Hermes)
2. RNHermesCTF.apk (With Hermes)

Do check these out!

Finally, thank you for taking the time to read this ebook. I hope you had fun trying out
these test cases on our React Native CTF application. Do let us know if you have any feed-
back or comments. Until next time, Adios!!

Final Thoughts

https://github.com/banditVedant/React-Native-CTF/releases/tag/reactnative
https://github.com/banditVedant/React-Native-CTF/releases/tag/reactnative

About Payatu
Payatu is a Research-powered cybersecurity services and training company specialized

in IoT, Embedded Web, Mobile, Cloud, & Infrastructure security assessments with a prov-

en track record of securing software, hardware and infrastructure for customers across

20+ countries.

Mobile Security Testing
Detect complex vulnerabilities & security loopholes. Guard your mobile

application and user’s data against cyberattacks, by having Payatu test

the security of your mobile application.

IoT Security Testing
IoT product security assessment is a complete security audit of embed-

ded systems, network services, applications and firmware. Payatu uses

its expertise in this domain to detect complex vulnerabilities & security

loopholes to guard your IoT products against cyberattacks.

Cloud Security Assessment
As long as cloud servers live on, the need to protect them will not di-

minish. Both cloud providers and users have a shared. As long as cloud

servers live on, the need to protect them will not diminish.

Both cloud providers and users have a shared responsibility to secure

the information stored in their cloud Payatu’s expertise in cloud protec-

tion helps you with the same. Its layered security review enables you to

mitigate this by building scalable and secure applications & identifying

potential vulnerabilities in your cloud environment.

https://payatu.com/mobile-application-security-testing/
https://payatu.com/iot-security-testing/
https://payatu.com/cloud-security-assessment/
https://payatu.com/iot-security-testing/
https://payatu.com/web-security-testing/
https://payatu.com/cloud-security-assessment/
https://payatu.com/mobile-application-security-testing/

Web Security Testing
Internet attackers are everywhere. Sometimes they are evident. Many

times, they are undetectable. Their motive is to attack web applications

every day, stealing personal information and user data. With Payatu, you

can spot complex vulnerabilities that are easy to miss and guard your

website and user’s data against cyberattacks.

DevSecOps Consulting
DevSecOps is DevOps done the right way. With security compromises

and data breaches happening left, right & center, making security an

integral part of the development workflow is more important than ever.

With Payatu, you get an insight to security measures that can be taken

in integration with the CI/CD pipeline to increase the visibility of security

threats.

Code Review
Payatu’s Secure Code Review includes inspecting, scanning and eval-

uating source code for defects and weaknesses. It includes the best

secure coding practices that apply security consideration and defend

the software from attacks.

Red Team Assessment
Red Team Assessment is a goal-directed, multidimensional & malicious

threat emulation. Payatu uses offensive tactics, techniques, and proce-

dures to access an organization’s crown jewels and test its readiness to

detect and withstand a targeted attack.

https://payatu.com/web-security-testing/
https://payatu.com/devsecops-consulting/
https://payatu.com/code-review-service/
https://payatu.com/red-team-assessment/
https://payatu.com/web-security-testing/
https://payatu.com/devsecops-consulting/
https://payatu.com/code-review-service/
https://payatu.com/red-team-assessment/

Product Security
Save time while still delivering a secure end-product with Payatu. Make

sure that each component maintains a uniform level of security so that

all the components “fit” together in your mega-product.

Critical Infrastructure Assessment
There are various security threats focusing on Critical Infrastructures like

Oil and Gas, Chemical Plants, Pharmaceuticals, Electrical Grids, Manu-

facturing Plants, Transportation systems etc. and can significantly im-

pact your production operations. With Payatu's OT security expertise you

can get a thorough ICS Maturity, Risk and Compliance Assessment done

to protect your critical infrastructure.

CTI
The area of expertise in the wide arena of cybersecurity that is focused

on collecting and analyzing the existing and potential threats is known

as Cyber Threat Intelligence or CTI. Clients can benefit from Payatu's CTI

by getting – social media monitoring, repository monitoring, darkweb

monitoring, mobile app monitoring, domain monitoring, and document

sharing platform monitoring done for their brand.

More Services Offered
• AI/ML Security Audit

• Trainings

More Products Offered
• EXPLIoT

• CloudFuzz

Payatu Security Consulting Pvt. Ltd.

www.payatu.com

info@payatu.com

+91 20 41207726

https://payatu.com/product-security-assessment/
https://payatu.com/cloud-security-assessment/
https://payatu.com/reports/
https://payatu.com/ai-ml-security-audit/
https://payatu.com/
https://expliot.io/
https://cloudfuzz.io/
http://www.payatu.com/
https://www.youtube.com/@payatu5031
mailto:info%40payatu.com%0D?subject=
https://www.youtube.com/@payatu5031
https://www.linkedin.com/company/payatu/mycompany/
https://www.facebook.com/payatutechnologies
https://twitter.com/payatulabs
https://www.instagram.com/payatubandit/
https://payatu.com/cloud-security-assessment/
https://payatu.com/reports/
https://payatu.com/product-security-assessment/
https://payatu.com/ai-ml-security-audit/
https://expliot.io/
https://cloudfuzz.io/
https://payatu.com/

