Mastering React Native

Application Pentesting:
A Practical Guide

C@) Mastering React Native Application Pentesting: A Practical Guide

& Payatu

About the Author and Contributor

Vedant Wayal

Senior Security Consultant
Mobile Tower - Payatu

Vedant is an infosec enthusiast
with over four years of experience in
Mobile & Web application pentesting.

He enjoys diving into new areas of
research and creating CTF
challenges, particularly in the
mobile application security domain.

He has experience working on
various mobile application assess-
ments including native, hybrid, and

cross-platform applications, and has
performed assessments on various
Android and i0OS mobile applications
for vulnerabilities and security flaws.

Tanvi Tirthani

Content and Media Strategist
- Payatu

Tanvi is a Content and Media
Strategist with a special foray
into technology. With an MBA in
Marketing, Tanvi is well equipped
to develop memorable content
collaterals, where technology
comes easy to herl!

At Payatu, you will find her working
with the tech team to help them
enrich their copies and assets,
before they are rolled out to the
general public. A lot of her time
here is spent understanding the

cybersecurity arena and penning
things down in a distinct reflective
manner.

C@) Mastering React Native Application Pentesting: A Practical Guide

Table of Contents

1 afo o [V Lot 4o o FHE OO OO PO OO TP PO RTRTOROPO 1
Chapter 1. What IS REACE NATIVE?. ...ttt 4
Chapter 2. The Bridge CONCEP. . ettt s st e s se e e snseses et eeneenen 10
Chapter 3. Reverse Engineering React Native APPS.......ccerennnisesenesssesesssesesssssssse s sssssssssssssssssesens 13
Chapter 4. How to Find out if the Application is Built on React Native?..........eeeevecvernsncecees 18
Chapter 5. The Fun Part - Attack Surfaces Static ANalySiS......ccccrernrrrenerenerereeesesee e 25
Chapter 6. Editing and Patching React Native AppliICatioN........oocveoeerererrrrcreeeeeeer e 41
Chapter 7. Modifying HErmes BYEECOAE. 49
Chapter 8. SSL Certificate PINNING BYPaSS... s n
Chapter 9. Identify Manually Installed NPM PacKages........courrrirenerirererirereeirereseseseseseseseeesesseesesesesenes 76
Chapter 10. React Native npm Package CVEs Walkthrough.........eccceceeeseee e 83
FINALTROUGRNES. ...ttt ettt 88

FA o 1o LU L = 17 | U OO PORPTPTRRPVRRRRRT. | | |

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Introduction

<1/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Nowadays, there is an emergence of cross-platform hybrid applications on a large
scale. Many top organizations are adapting different frameworks to develop or even
entirely rewrite their mobile applications.

In this wave, React Native framework is gaining popularity for building cross-plat-
form mobile applications. Began as a hackathon project, React Native is designed on
Facebook’'s React JavaScript toolkit, which extends the capabilities of the platform
to native mobile app development.

What to expect from this ebook?

Apart from usual Android application pen-test cases, we have curated some out-of-
the-box test cases and attack surfaces that you can use while specifically pentest-
Ing React Native applications.

This book covers React Native Android application’s pentesting. However, most of
the techniques can be used in i0S React Native applications as well. You will walk
through:

Introduction to React Native Framework

React Native JS code to Java Native Code Translation
React Native Application Architecture

Reverse Engineering of React Native Application

Static Analysis of React Native Android Application

A
A

Introduction <2 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

Prerequisites

It is assumed that the reader has prior knowledge about the following:

Basic knowledge about Android applications. Below are some references to get
started:

Android pentesting lab

Android pentesting tools

Oversecured vulnerable app overview
Getting started with Frida on Android App
Android Security Part-1

Basic knowledge about JavaScript and webpack bundler
Introductory knowledge about React Native language (Core react native, JSX, Babel)

A
A

Introduction <3 /92>

https://payatu.com/blog/amit/android_pentesting_lab
https://payatu.com/blog/akansha/must-have-tools-for-your-android-pentesting-toolkit
https://payatu.com/blog/rahul.kumar/oversecured-ovaa-walkthrough-part1
https://payatu.com/blog/amit/Getting%20_started_with_Frida
https://payatu.com/blog/amit/Need-to-know-Android

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Chapter 1

What is React Native?

<4 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

React Native is a JavaScript-based framework curated for developing native applications
on platforms like Android and i0S. Facebook initially made React Native available as an
open-source project in 2015. It quickly rose to the top of the list of tools used for mobile
application development.

Why is there a lot of buzz around the React Native
framework?

&b The tagline of React Native itself is “Learn once, write anywhere.” Thanks to the fea-
ture of re-using a large chunk of code of application across different platforms, React
Native framework makes it easier to develop applications that provide a better user ex-
perience by utilizing the platform’s features along with building apps that are easier to
develop and operate on a wider range of platforms and devices.

@ We can write applications for different platforms such as i0S, and Android with minor
tweaks in code as per the platform which translates into saving great time and resources.
React Native combines the best parts of native development with React, a best-in-class
JavaScript library for building user interfaces.

Cat Cafe Menu

ViewGroup Cat Cafe Menu
v =]) .
ImageView TextView I. Maru
i # Maru
Spot
Spot
kj Pouncival
H Pouncival U PDUHCWB' .. Rum Tum Tugger
L. Rum Tum Tugger
U Tabby
Tuna UIImageView i
el 9 A w) Mrs. Norris
Mrs. Norris
L] UIView Choupette
Choupette

Cross-platform compatibility of React Native applications

Image Source: https://dev.to/goodpic/understanding-react-native-architecture-22hh

A
A

Chapter 1 <5 /92>

https://dev.to/goodpic/understanding-react-native-architecture-22hh

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Examples of React Native applications:

Some of the prominent examples of React Native apps are:

AN
=3 Call of Duty Companion App ! DonaldDaters

CALLDUTY.

“ NerdWallet . Uber Eats
Q-

You can download the APKs of these apps and play around.

Why not use a hybrid application which
displays data over WebView instead of Re-
act Native?

Web+Mobile hybrid applications are capable of displaying web content using WebView in
native Android applications. Users can interact with the web content loaded inside the
WebView. However, there are challenges to this type of architecture when the application
wants to access the user’s device resources such as camera, storage, various sensors,
basic device information, etc.

React Native has made it possible to access these native features of the device along with
JavaScript besides deploying on the web. For this, utilized is a “JavaScript Bridge” con-
cept, which we will discuss in the upcoming segment of this ebook.

A
A

Chapter 1 <6 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

React Native Application Architecture

WHAT |r‘|‘5\m LD YOU
!

“
i)

A

MOBILE APPLICATIONS
CAN BE BUILT USING JAVASCRIPT

React Native applications are written in a combination of JavaScript and JSX. JSX is a
special syntax extension to JavaScript. A key concept in React Native is “Component”. A
component is a piece of a user interface similar to the “Activities” in JAVA-based android
applications. A React Native application can be made of multiple components which are
interconnected. These components are composable and reusable throughout the applica-

tion.

Mobile Platform

Javascript

REACT.JS REACT NATIVE NATIVE SCREEN

Root . < > [ReactRootView]

<View> - <Vi —_—— [ViewGroup]

<Text> —————» <TextShadowNode> . [TextView]

JavaScript to Native code translation

Image Source: https://reactnative.dev/architecture/render-pipeline

A
A

Chapter 1 <7/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

How does react native JavaScript code gets
translated into the native code of the plat-
form (Android/iOS)?

React Native brings React's declarative Ul framework to i0OS and Android platforms. With
React Native, you use native Ul controls and have full access to the native platform fea-
tures.

As we discussed above, React Native app can have multiple components. During the com-
pilation, all of the components get compiled into one single file as demonstrated below:

Sample React Native project structure:

) File Edit Selection View Go Run Terminal Help Appjs - RNApi - Visual Studio Code [Administrator]

@ EXPLORER 5 Appjs gingjs UserProfile js (IS Payment s
 RNAPI AD
> _tests

» password: password }

IS App.js

{} appjson
2 babel.configjs

Gemfile

= Gemfile.lock

> OUTLINE

2> TIMELINE

As you can see above; the application consists of multiple JS component files during de-
velopment. However, during compilation into APK, all the code in these multiple JS com-
ponents gets bundled into one single file i.e., “index.android.bundle”.

A
A

Chapter 1 < 8 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

Tracking.js

Before understanding “How things work?”, we need to first understand “What

are those things?”

A very brief overview of the React Native application’s workflow:

&> We write code in JavaScript

&b This JavaScript code gets converted into Native code

A
A

Chapter 1 <9 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Chapter 2

The Bridge Concept

<10/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

React Native deals with two realms, JavaScript and Native. The communication happens
between these two realms over a communication channel called the “Bridge”. As the
name suggests, it provides a literal bridge for these two realms to communicate. Bridge
provides a way for bidirectional and asynchronous communication. In short, it provides a
way of communication for completely two different technologies i.e., JavaScript and Na-
tive.

Modules RN Bridge

: (Java/C++)
Android -Java ~ _ "~

i0S- Obj C /Swift =~ &= — — — — — — —

React Native bridge concept

Image Source: https://approov.io/blog/react-native-bridging-an-Android-native-module-for-app-authentication

Now coming back to “How things work?”, below is how the JS code gets translated into a
mobile application.

® React Native app is written in JavaScript + JSX.

® The Bridge sends this JavaScript code to the JavaScript core Runtime to further com-
municate with native components.

® The communication happens in multiple threads. As React Native is asynchronous,
each code and process run in different threads. For example, layout calculations happen
in one thread while native code rendering happens in another. These two threads never
communicate directly and never block each other.

® JavaScript threads communicate with Native threads via the Bridge.

@ Finally, the native components of the platform communicate with i0S/Android SDK and
execute the operation instructed in the initial JS code.

Chapter 2 <11/92>

https://approov.io/blog/react-native-bridging-an-Android-native-module-for-app-authentication

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

TL;DR
® React Native code = JS+JSX code written during development,

® JS core engine = Converts JS code into respective native code with the help of a
bridge between React Native and Native code.

® Bridge = Facilitates communication between JavaScript code and Native compo-
nents.

® Android/iOS native code = Runs the converted Native code on the platform and
also provides support for all native features such as camera access, sensor access, de-

vice information, etc.

Chapter 2 <12/92>

Chapter 3

Reverse Engineering
React Native Apps

C@) Mastering React Native Application Pentesting: A Practical Guide

Enough with the theory, it's time to get to real business.

Method 1: Using the APKTool:

This method will convert files such as “AndroidManifest.xml”, “classes.dex” etc files into

human-readable format. (Unlike Method 2)
Steps:

1. Install APKTOOL: https://ibotpeaches.github.io/APKtool/

2. Open cmd and type

apktool d app.APK

3. The application will be decompiled.

Name

R assets

R kotlin

R b

B original

R res

B resources

l smali

B sources

l unknown

B AndroidManifestxml

apktool.ymi

Chapter 3

<14/92>

https://ibotpeaches.github.io/APKtool/

C@) Mastering React Native Application Pentesting: A Practical Guide

4. Go to “/assets/” folder. It should contain the “index.android.bundle” file.

Name

B fonts

. index.android.bundle

5. If you open this file, you will find all React Native JS code in minified format.

[=index android bundle E3
var _NotificationRedux2 = babelHelpers.interopRequireDefault (_NotificationRedux);

4 var _marked = regeneratorRuntime.mark(addNotification);

function addNotification(api, _ref) {

var notification = _ref.notification;
var custom notification, id;
return regeneratorRuntime.wrap(function addNotification$(_context) {

while (1) {

4 switch (_context.prev = _context.next) {
case 0
_context.prev = 0;

if (!notification) {
_context.next = 8§;
break;

}

notification.custom notification ? JSON.parse(notification.custom notification) : {}, id = notification.id || notification.userid ||

7 custom_notification =
custom_notification.id;

if (!id) {

_context.next = 6;
break;

}

_context.next = 6;
return (0, _effects.put) (_NotificationRedux2.default.storeNotifications(id));
case 6:

_context.next = 10;

break;

case 8:
_context.next = 10;

return (0, _effects.put) (_NotificationRedux2.default.storeNotifications('interactions'));

case 10:
_context.next = 15;
break;
241295 case 12:
4 _context.prev = 12;

Chapter 3 <15/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

Method 2: Using Any Compression Tool

If you directly want to decompile applications without needing any tool, Method 2 is all you
are looking for.

1. Rename the extension of APK file to .zip
2. Now open this file with any compression management tool such as winzip, 7zip

H2 vuln_app_v1.0.zip (evaluation copy)
File Commands Tools Favorites Options Help
BooOiiie «\© @ & =
[e—_ ‘ \ o — v I

Add Extract To Test View Delete Find Wizard Info VirusScan Comment SFX

b ﬁ Vuln_app v1.0..zip - ZIP archive, unpacked size 37,037,321 bytes
MName Size Packed Type Mcdified CRC32
5l

assets 11,735,925 3,033,520 File folder

javax 22,686 10,597 File folder

lib 14,659,960 6,012,755 File folder

META-INF 160,952 48,051 File folder

res 2,219,164 2,099,061 File folder

| AndroidManifestxmi 17,532 3,771 XML Document 08-10-2018 08:.. 5725628A
| androidsupportmultidexversion.txt 53 53 Text Document BAC94CIA
| classes.dex 7,791,172 3,116,259 DEXFile 3887BD53
| firebase-analytics.properties 74 50 Properties Source F... 2EF3A30C
| firebase-analytics-impl.properties 84 55 Properties Source F... E26A2687
| firebase-common.properties 68 47 Properties Source F... DT1DF402
| firebase-core.properties 64 45 Properties Source F... A292F15B
| firebase-iid.properties 62 44 Properties Source F.. 4C0C848B
| firebase-iid-interop.properties 78 52 Properties Source F... 9766F0CE
| firebase-measurement-connector.properties 98 61 Properties Source F... 65A02CRBC
| firebase-measurement-connector-impl.properties 108 66 Properties Source F... 1D80D156
| firebase-messaging.properties 74 50 Properties Source F... 80940655
| play-services-ads-identifier.properties 94 39 Properties Source F... BBFO5434
| play-services-base.properties 74 50 Properties Source F... TFFEDBSA
| play-services-basement.properties 82 53 Properties Source F... EBD217CE
| play-services-gcm.properties 72 49 Properties Source F.. 2601A942
| play-services-iid.properties 72 49 Properties Source F.. 3CF2TABD
| play-services-measurement-api.properties 96 60 Properties Source F.. 130D86F5
| play-services-measurement-base.properties 98 61 Properties Source F... 16F159F2
| play-services-stats.properties 6 51 Properties Source F... D8B71498
| play-services-tasks.properties 76 51 Properties Source F... 77827071
| resources.arsc 428,404 428,404 ARSC File 4B1BAYSF
| sentry-build.properties 23 23 Properties Source F... 60149C3C

Chapter 3 <16/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

& Payatu

3. Extract all the files in that zip and you will be able to access the files. Some of the files
will not be in a human-readable format.

Chapter

3

Name

B assets

B javax

l b

W META-INF

B ores

B AndroidManifestxml

g androidsupportmultidexversion.txt

B classes.dex

B firebase-analytics.properties

5 firebase-analytics-impl.properties

. firebase-common.properties

B firebase-core.properties

B firebase-iid properties

5 firebase-iid-interop.properties

. firebase-measurement-connector.properties

B firebase-measurement-connector-impl.properties

= firebase-messaging.properties
play-services-ads-identifier.properties
play-services-base.properties
play-services-basement.properties
play-services-gcm.properties

play-services-iid.properties

play-services-measurement-base.properties
play-services-stats.properties
play-services-tasks.properties

resources.arsc

|
]
=]
B
|
B play-services-measurement-api.properties
B
B
B
lal
B

sentry-build.properties

Type

File folder

File folder

File folder

File folder

File folder

XML Document

Text Document

DEX File

Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
Properties Source File
ARSC File

Properties Source File

<17/92>

Chapter 4

How to Find out if the
Application is Built on
React Native?

C@) Mastering React Native Application Pentesting: A Practical Guide

& Payatu

1. Check the presence of the “index.android.bundle” file

a. Follow the steps mentioned above to decompile the application.

b. Among the extracted folders, check if the “/assets/index.android.bundle” file is present.

This confirms that the application is built on React Native.

Name Type

B fonts

B include

B shared

M DigiCertHighAssuranceEVRootCA.crt
| o] entrust_g2_ca.cer

File folder
File folder
File folder
Security Certificate
Security Certificate

1KB
2 KB

! help_center_article_style.css
index.android.bundle
m supplierconfig.json

Cascading Style Sh... 9 KB
BUNDLE File 17,416 KB
JSON Source File 1KB

2. Check the “com.facebook.react” string in “AndroidManifest.xml” file
a. Decompile the application using the APKtool as mentioned above.
b. Open “AndroidManifest.xml” file and search for “com.facebook.react” string.

action
<catego
<cateqgo

me="android.intent.action.VIEW"/>
"andreid.intent.category.DEFAULT"
="andreoid.intent.category. BROWSABLE" />
<data and: l:host="cct.com.wix.android" andr 1: scheme
</intent-filter>

"fhconnect"

|-4c'icit3 ndroid:exported Ialac and ="gom. facebook.react. dcvauppurt DLvSLLLlngsnct;v;ty xI
ctivity andr l:exc leFr ents="true" android:exported="false" i lak
i ne="com. strlpc stripeterminal. UsbhventRecclverﬂct1u1ty
and ':UsbEventReceiverActivityProcess"
"com. strlpe sttlpetermlnal taskAfflnltyUsbLuentHecelver
intent-filter

"gstring/app_name'
ry="trua"

eme="@style/Theme.Transparent">

chir indr lzname="android.hardware.usb.action.USB_DEVICE hTThCHED“E-
</ir cnl I|f1v:=
<meta=-data me= androld hardware.usb.action.USE_DEVICE_ATTACHED" and: :re 1 =
@xml/usb_device_. fnlter

ACT1 ."Il"J' And
"portralt F
< ivity android:icor iChanges="keyboardHidden|orientation|screenSize” and: l:exported="true"

"wix.com.mediamanager.newupload.camera.Camerafctivity"

Chapter 4 <19/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

React Native APK file structure:

Let's sneak into a release build of a sample React Native Android application.
Once decompiled, the basic React Native Android application consists of the following
contents:

MyReactNativeApp.APK/

—— assets/

— [ndex.android.bundle
<<0Other-files>>

com/

kotlin/

lib/

META-INF/

— services/
<<0Other files>>
— MANIFEST.MF
— BNDLTOOL.RSA
— BNDLTOOL.SF
okhttp3/

res/

L <<layout-related-files>>
—— AndroidManifest.xml

— Classes.dex

—— <<other files>>

Note: There are lots of files and directories in this hierarchy. However, only important files and
directories are shown in the above diagram.

Chapter 4 <20/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Let’s understand some important files and directo-
ries:

&b assets/

® The “assets/” folder is the important directory to look for while reversing the
React Native applications. It contains assets such as fonts, .json files, .prop-
erties files, extended JavaScript files along with “index.android.bundle” file.

Index.android.bundle: This file is the heart and soul of React Native
applications as it contains the entire core logic of the application. It's a
JavaScript bundle file and all of the application’'s JavaScript+JSX code
Is compiled into this file in minified format. We will learn more about
this file in upcoming sections.

Name Type

B containers File folder

B fonts File folder

m aps_mobile_client_config,json JSON Source File
aps-mraid.js JavaScript File
B baseman.txt Text Document

=] comScore.properties Properties Source ...
B dtb-m.js JavaScript File
index.android.bundle BUNDLE File

1) supplierconfig.json JSON Source File
o™ template.html Microsoft Edge HT...

&b kotlin/

® Contains Kotlin code files. These files contain data for declarations of
standard ("built-in") Kotlin classes which are not compiled to .class files,
but rather are mapped to the existing types on the platform (in this case,
JVM). For example, kotlin/kotlin.kotlin_builtins contains the information for

non-physical classes in package Kotlin: Int, String, Enum, Annotation, Collec-
tion, etc.

Chapter 4 <21/92>

& Payatu

C@) Mastering React Native Application Pentesting: A Practical Guide

&> META-INF/

® This directory is also one of the important directories while reversing React
Native applications. The META-INF folder contains the manifest information
and other metadata about the java package carried by the jar file.

® This means it also contains application signing-related files such as men-
tioned below. We will come back to this folder again in the pentesting part of
the article.

Chapter

4

MANIFEST.MF

It contains various information used by the java run-time environ-
ment when loading the jar file, such as which is the main class to

be run from the jar file, the version of the package, build number,
creator of the package, security policies/permissions of java applets
and java webstart packages, the list of file names in the jar along

with their SHA1 digests, etc.

BNDLTOOL.RSA

This contains the list of all files along with their SHA-1 digest.

BNDLTOOL.SF

This contains the signed contents of the CERT.SF file along with the
certificate chain of the public key used for signing the contents.

Name

W services

B MANIFEST.MF

#) BNDLTOOLRSA

B BNDLTOOLSF

L4 androidx.activity_activity.version

B androidx.activity_activity-ktx.version

. androidx.annotation_annotation-experim...

B androidx.appcompat_appcompat.version

il androidx.appcompat_appcompat-resour...

. androidx.arch.core_core-runtime.version

[| androidx.asynclayoutinflater_asynclayouti...

. androidx.autofill_autofill.version
. androidx.biometric_biometric.version
. androidx.browser_browser.version

[] androidx.cardview_cardview.version

. androidx.coordinatorlayout_coordinatorl...

Type

File folder
MF File

RSA File

SF File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File
VERSION File

<22/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

&> res/

@ Contains all non-code resources, such as XML layouts, Ul strings, and bitmap
Images, divided into corresponding sub-directories.

Name Type

R anim File folder
. animator File folder
B animator-v21 File folder
B anim-v21 File folder
R color File folder
B color-night-v8 File folder
R color-v23 File folder
B color-v26 File folder
R color-v31 File folder
B drawable File folder
n drawable-anydpi-v21 File folder
l drawable-anydpi-v23 File folder
n drawable-anydpi-v24 File folder
[| drawable-hdpi-v4 File folder
B drawable-hdpi-v23 File folder

&> AndroidManifest.xml

® AndroidManifest.xml is one of the most important file in any android applica-
tion. If you know even a little bit about android app pentesting, you may know
the importance of this file. The AndroidManifest.xml file contains information
about your package, including components of the application such as activi-
ties, services, broadcast receivers, content providers, etc.

® While developing and compiling React Native applications, this file is auto-
matically generated by Gradle. Therefore, some of the configurations in this
file are vulnerable by default. We will check this file out later in the pentest-
Ing part.

Name Date modified Type

B assets 25-08-2022 11:30 AM File folder
B com 5-0 % 0 ANV File folder
n google 25-0 :30 AM File folder
B kotlin File folder
l b File folder
W META-INF 2 B v File folder
B oknttp3 2 11:30 AM File folder
W ores 25-08-2022 11:30 AM File folder
B AndroidManifestxml 01-01-1981 01:01 AM XML Document 39 KB

. androidsupportmultidexversion.txt 01-01-1981 01:01 AM Text Document 1KB
B classes.dex 01-01-1981 01:01 AM DEX File 9,563 KB

Chapter 4 <23/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

&> classes.dex

® Even if the React Native applications are written in JavaScript, when they
get translated into the android application, Java bytecode code is generated
automatically to run the application using ART. This file contains the Dalvik
bytecode of this Java bytecode.

® You may find multiple classes.dex files in the apk because of the limitation of
dex size (65K) for a single dex file. Multidexing is used in this situation and
that's why you will find multiple dex files in the apk.

Name Type

l assets File folder
l com File folder
[| google File folder
B kotlin File folder
R b File folder
B META-INF File folder
B okhttp3 File folder
l res File folder
. AndroidManifest.xml XML Document 39 KB
. androidsupportmultidexversion.txt Text Document 1KB
B classes.dex DEX File 9,563 KB
B classes2.dex DEX File 7,544 KB
B classes3.dex DEX File 6,263 KB
B classes4.dex DEX File 1,241 KB

= core.properties Properties Source ... 1KB

B firebase-abt.properties Properties Source ... 1KB

Chapter 4 <24/92>

Chapter 5

The Fun Part - Attack
Surfaces & Static
Analysis

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Sensitive information in the “index.android.bundle”

file

What is the “index.android.bundle” file?

® In React Native, App.js acts like Main.java. When React Native apps get com-
piled into an APK file, the React Native index files and components get con-
verted into JS code via JS bridge.

® In React Native applications, all of the JavaScript code written in the project
gets compiled into the “index.android.bundle” file when the application is built.
Thus, this file contains all of the JavaScript code of the application in minified
format.

® When you decompile the React Native apk, the contents of the main ‘App.js’
file and all other components will be bundled together in JS format in the “in-
dex.android.bundle” file as mentioned above. This means the “index.android.
bundle” file contains all of the source code of React Native application. We
can search for hardcoded stuff in this file.

During Development After compilation into native code

~ ASYNCSTORAGE

/media/sf_VMSharedFold,/asyncStorage/assets

omponents index droid.bundle

Login.js

Steps:

1. Decompile application using APKtool.
2. Locate “index.android.bundle” file in /assets folder.

/<appfolder>/assets/

Chapter 5 <26/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

There is a lot of sensitive information that might be hardcoded in the application compo-
nent files which later gets compiled into the “index.android.bundle” file. We will look at
some types of information that we can find in this file.

1. Hardcoded credentials and tokens:

The poor management of the credentials and tokens is a naive mistake that we find hap-
pening in lots of Android applications. The React Native application is no exception. In fact,
hardcoding of the stuff is much higher in React Native as compared to regular native Java
apps, and “index.android.bundle” is a goldmine for the hardcoded stuff.

You can search for keywords such as “secrets, tokens, password, apikey, username, login”
etc. to find such goofy hidden secrets in the “index.android.bundle” file.

this.resetError = function (callback) {
I _this.setState({ error: null }, function () {
if ("function' == typeof callback) callback():
b:
i

ls.api = _PRpi2.default.create (props.access_token);
[var fsxToken |
€yJNDGC101d1UZI1Ni ISInR5cCI6IKpXVCIY. eyTzdWIioi IxMiMONTY 30DkWIiwibmFtZSI6IkpvdG4gRG1TIiwiaWF0IjoXNTE2MMSMD)

_this.state = {
current: {
text: "'
placeholder: this.getPlaceHolder(),
valid: false

password: {
text: ',

2. Third-party database credentials:

Most React Native applications use third-party databases such as firebase to store in-
formation. There have been numerous instances of hardcoding credentials of these
third-party databases. Lots of credentials are too permissive within their React Native
application.

The following keywords can be used to grab these credentials within the target React
Native application:

apiKey FIREBASE_API_KEY
FIREBASE_API_KEY aws

endpoint firebase
storageBucket databaseURL

Chapter 5 <27/92>

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

[=] index android.bundle EJ ‘

6549 wvar firebaseConfig = {

136550 apiKey: "AIzaSyASIRdHOfRATKCFBIQmGafENINEGEGEEEE ",
136551 authDomain: h firebaseapp.com"”,

136552 databaseURL: "https://| I .ircbascio.com”,
136553 storageBucket: "[IINGEGEGGEN.:r0s004. con”

}:

firebase.initializeApp(firebaseConfig);

136550 exports.default = firebase;
136559 }, 2621, null, "R 2rp/config/Firebase.js");

126560 _ d(/* firebase/index.react-native.js */function(global, require, module, exports) {

136562 var firebase = require (2623 Y: // 2623 = ./app
36563 require (2629 y: // 2629 = ./auth

3. Hidden backdoors and URLs

Developers tend to add backdoors or URLs in the code for various purposes such as de-
bugging, shortcuts to the functionality for convenience, etc. Sometimes they forgot to re-
move those URLSs, and shortcuts while deploying built to the productions. We can scratch
through the file to find these hidden URLs and shortcuts.

}, [(0, i.default) ()1):

e.default = p
, 6289, [2, 61, 142, 16, 2014, 2030, 2836, 4880, 2029, 1806, 1808]):
| d(function(g, r, i, a, m, e, d) {

m.exports = r(d[0]).registerdsset ({
——mohacer acaat o L
httpServerLocation: "https://%2.135.43.12/dev/prod-server/",
wiULIT. T J e DI I I I I IIIIII Iy
height: 72,
scales: [1.5, 2, 3, 41,
hash: "d4f9dB8d58b3067de8eaf80d5d8e3bscc”,
name: "cards activate",

type: "png"

The “index.android.bundle” file contains the core code of the application. Thus, sometimes
this file can be huge to analyse. We can be more creative with custom keywords depend-
Ing upon the type of application, technology, frameworks used in the application, etc.

Chapter 5 <28/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

Splitting “index.android.bundle” code into multiple JS com-
ponents

As we saw above, all of the JS code is crunched into one “index.android.bundle” file. Nav-
igating through this bulk code is a headache. Fortunately, there is a way to break down

this bundle code into multiple JS files with the help of the following npm module.

react-native-decompiler

Steps:

1. Install above mentioned “react-native-decompiler” module. Check the installation in-
struction in the URL of the module above.

2. Unzip the contents of the vulnerable application into a folder and go to the “assets”
folder.

3. Now open command prompt in “assets” folder and type following command:

npx react-native-decompiler -i ./index.android.bundle -o ./out-

put

4. Wait for the process to complete and the “index.android.bundle” file will be decompiled
into multiple JS modules in the “output” folder.

5. Unfortunately, most of the React Native android application does not generate source-
map file unlike React js web applications. Thus, we have to manually navigate through
various components of the application.

Chapter 5 <29/92>

https://www.npmjs.com/package/react-native-decompiler

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

Navigating through multiple decompiled JS modules:

You got decompiled JS files but things are still messy. Let's simplify things. We will navi-
gate through these files to reach to right code.

Steps:

1. Once you decompile the “index.android.bundle” file, you will see multiple .js files in the
“output” folder. We can start with “0.js” file. Consider this file as main component file of
the application. (App.js)

2. Open this file and check which files are imported in the beginning of the file. It should
look like the below:

var ReactNative = require(': native'),
module3®7 = (require('. Y)Y ;
HReactNative.AppRegistry.registerComponent (require('./404"') .name, function () ({

return module397.default;
b

or in case of multiple imported components:

var ReactNative = require('react-na ve'),
module409 = require('./409")
moduled4l3 = require('.),
moduled25 = require('./425"),
moduled26 = require('. ") ;
ReactNative.StatusBar.setBarStyle ('’ ht-content', false);
if (moduled4l3.device.isAndroid) ReactNative.StatusBar.setBackgroundColor('+# ")

moduled409.default.enforce() ;

HReactNative.AppRegistry.registerComponent (moduled425.name, function () {
return moduled2eo.default;

b

Chapter 5 <30/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

3. We can spot these files from the list of multiple .js files.

4. Open this file and you will see the bundled JS code (bundled via webpack).

lexports.default = function () {
var ¢ = React.useState(''"),
module23.default(c,),
£ro1,
Sl Iy
React.useState('"),
module23.default(y,),
b[0],
b['],
function () {
return module7é6.default.async(
function (n) {
for (;;)
switch ((n.prev = n.next)) {
case
n.prev = 0;
n.next = 3;

5 OX o <0

case
v('");
n.next = &;
return module76.default.awrap(0()) ;

case
alert('Data is saved');
n.next = ;
break;

case
n.prev = 9;
n.t0 = n.eatch(0) ;
console.log(n.t0);

return module76.default.awrap (module398.default.setltem (" "y P));

Decompiling Hermes bytecode

As we saw above, the “index.android.bundle” file contains the core logic of the entire ap-
plication. Thus, the React Native team created their own JavaScript engine called Hermes.
This engine is used to run React Native applications. The JS source code is often compiled

Into the Hermes bytecode, obstructing JS code to some extent.

Chapter 5

<31/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

What is Hermes?

Hermes is an open-source JavaScript engine optimized for React Native. For many apps,
enabling Hermes will result in improved start-up time, decreased memory usage, and
smaller app size. Refer: https://reactnative.dev/docs/hermes

Thus, when you decompile the React Native application that uses Hermes during compi-

lation, the code in the file “index.android.bundle” will be converted into Hermes byte. The
contents of the file will look like this:

I adex setraioundie 1

i ‘EEES
5
E H
g i

-| I &

TR TR E

[
i
=g
gd

=
& &
&

]
a;!

ii\ AT T

What the hell happened'here?

Fortunately, there is a way to convert this mess into a human-readable format. Shoutout
to: *https://github.com/bongtrop* for creating hbctool This tool lets us disassemble en-
crypted bundle file back to Hermes instruction set which is in human-readable bytecode.

Chapter 5 <32/92>

https://hermesengine.dev/
https://reactnative.dev/docs/hermes
https://github.com/bongtrop*

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Pre-requisite:

hbctool: https://github.com/bongtrop/hbctool

Challenge APK: https://github.com/ErbaZZ/hermes-reversing-lab/blob/main/HermesRe-
versinglLab.APK

Steps:
1. Decompile APK and go to the “/assets” folder.
2. There you will find the “index.android.bundle” file.

3. Install the hbctool with the following command

pip install hbctool

4. Open the command terminal in the “/assets” folder and type the following command to
disassemble Hermes bytecode into human-readable format:
hbctool disasm <index.android.bundle> <output_folder_name>

5. A folder will be created containing disassembled Hermes bytecode. Now go to the out-
put folder (dis_code)

Directory of C:\Users\payatu\Desktop\HermesReversinglLab\assets\dis code

-2022 ©5:12 PM <DIR>
-2022 ©5:12 PM <DIR> ..
-2022 ©5:12 PM 6,717,740 instruction.hasm

09-08-2022 ©5:12 PM 3,049,996 metadata.json
09-08-2022 ©5:12 PM 478,952 string.json

3 File(s) 10,246,688 bytes

2 Dir(s) 56,401,403,904 bytes free

® metadata.json: storesthe important information of Hermes bytecode file

® -+nstruction.hasm: stores the application instructions or logic in HASM
format (edit application logic in this file)

® string.json: store the application strings or texts (edit strings in this file)

Chapter 5 <33/92>

https://github.com/bongtrop/hbctool
https://github.com/ErbaZZ/hermes-reversing-lab/blob/main/HermesReversingLab.apk
https://github.com/ErbaZZ/hermes-reversing-lab/blob/main/HermesReversingLab.apk

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

6. Open the “instructions.hasm” file and analyze instructions sets.

[=] instruction.hasm E3 ‘
52884 GetByIdShort Reg8:1, Reg8:1, UInt8:1, UInt8:151
; oper[3]: string(151) 'state'

182887 GetById Reg8:2, RegB8:1, UInt8:2, UIntlé:2795
182888 ; Oper[3]: String(2795) 'counter'

LoadConstInt RegB8:1, Imm32:1336
JNotGreaterEqual Addr8:43, RegB8:2, RegB:1
GetGlobalCbject Reg8:1

""" TryGetById Reg8:2, RegB8:1, UInt8:3, UIntlé:3716

; oper[3]: sString(3716) 'alert'|

..... 06 LoadFromEnvironment Reg8:4, Reg8:0, UInt8:0
182897 GetById Reg8:3, RegB:4, UInt8:5, UIntlé:4072
182898 ; Oper[3]: String(4072) ‘'decrypt'

LoadConstString RegB:1, UIntlé6:1724
; Ooper[l]: String(1724) '"ZXXZt3UWNXVYadJ2XJZzm25vJIFX93ZXnX2fhzZP3Z2I5lomxX0k20=hJpt"

LoadConstString Reg8:0, UIntle:219
2904 ; Oper[l]: String(219) 'onPress'

182906 Call3 Reg8

:1, RegB8:3, RegB:4, RegB8:1, RegB:0
182907 LoadConstUndefined Reg8:0
182 call2 Reg8:0, Reg8:2, Reg8:0, Reg8:1
18290¢ LoadConstUndefined Reg8:0
Ret Reg8:0
EndFunction

Function<>3846 (1 params, 20 registers, 0 symbols):

182914 LoadThisNS Reg8:3

182915 LoadConstUndefined Reg8:2

182916 LoadConstUndefined Reg8:4

182917 GetEnvironment Reg8:0, UInt8:1

18291 LoadFromEnvironment Reg8:1, RegB8:0, UInt8:4
GetByldShort Reg8:6, RegB:l, UInt8:1, UInt8:147

; Oper[3]: String(147) 'default’

7. You can find secrets that are stored in String constants by searching for specific key-
words such as password, tokens, secret, apikey etc.

Chapter 5 <34/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

8. You can use keyword: [JId RN dR i I-4@ to grep all of the strings in the bytecode.

defined Reg8:2
tString Regd:1l, UIntlé:787
1:SEring({787) 'Increase button has already been broken.'

Hermes is a custom JavaScript engine created by Facebook. Therefore, the only way to
understand this bytecode is to analyse the code patterns. We will see how to read and
understand Hermes code in dynamic exploitation in the upcoming chapters.

Grabbing files stored using AsyncStorage

What is AsyncStorage in React Native?

According to the official react native document-

AsyncStorage is an unencrypted, asynchronous, persistent, key-value storage system
that is global to the app. It should be used instead of LocalStorage.

AsyncStorage is also asynchronous, i.e., its methods run concurrently with your code.

It is also persistent, meaning that the stored data will always be available globally even if
you log out or restart the application.

Chapter 5 <35/92>

https://reactnative.dev/docs/asyncstorage

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

When it becomes a concern?

The data which is stored via AsyncStorage is unencrypted, thus data stored is accessible
to anyone with access to the device who can get this data in cleartext. If the application is
storing any such credentials of services, user's session token, passwords, or any other
sensitive information via AsyncStorage, then it is easy to access this data for an attacker
with access to the device.

Where do these files get stored on the device?

On Android, AsyncStorage will use either SQLite or RocksDB based on availability. You
can find the databases in the following location:

/data/data/<Your-Application-Package-Name>/databases/<your-data-

base-name>

How to Test:
Steps:

1. Install the vulnerable app on the emulator/physical device and make sure data is get-
ting stored in AsyncStorage.

Alert

Chapter 5 <36/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

2. Run the following command to run ADB daemon as root:
adb root

3. Access the shell of the device via Elels IS 1M1

4, Navigate to the databases folder of the application
cd /data/data/<com.your.package>/databases

0. You will find 3 files in this folder. You can check the contents of each file with
strings RKStorage
strings RKStorage-wal
strings RKStorage-shm

vbox86p: /data/data/com.xdxd/databases # 1ls -1

total 76

-rw-rw---- 1 u@_a8 ud_a8 20480 2022-08-13 12:37 RKStorage
-rw-rw---- 1 u@_a8 uo_a8 32768 2022-08-13 12:37 RKStorage-shm
-rw-rw---- 1 u@_a8 u@_a8 8272 2022-08-13 12:37 RKStorage-wal

6. You will be able to see data stored in AsyncStorage in cleartext.

vbox86p: /data/data/com.xdxd/databases # strings RKStorage-wal
SQLite format 3
ctableandroid_metadataandroid_metadata
CREATE TABLE android_metadata (locale TEXT)
en_US
ZSQLite format 3
'tablecatalystlLocalStoragecatalystLocalStorage
CREATE TABLE catalystlLocalStorage (key TEXT PRIMARY KEY, value TEXT NOT NULL)G
indexsqlite_autoindex_catalystlLocalStorage_lcatalystLocalStorage
ctableandroid_metadataandroid_metadata
CREATE TABLE android_metadata (locale TEXT)
-itemList|s3cr3t_datal234
itemList
ISRl IR dcnc_key AQIPWQRA543B34DDFE
itemList

Chapter 5 <37/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

Sensitive information in XML files

In Android applications, XML files play important roles in defining layouts of components,
storing recurring strings, providing ids to the assets, etc. Developers sometimes store
sensitive information in these XML files in plaintext. We can go through these XML files to
find hardcoded secrets of the application.

Strings.xml

While looking for sensitive information in XML files, “Strings.xml” should be the first
place to look for. For convenience, developers might include frequently needed sensitive
Information such as credentials, static tokens, passwords, secrets, and hidden URLs in
the Strings.xml file which later can be referenced within the application. This file can be
located in the " /res/values/" folder of the decompiled application.

= swga s 3
corman_google_play_services_snabls _button®>Enable</strings -
L FrURLE Won't werk unléss you anable négln Flay Sarvices. nig>
=" >Enable Google PJ-lr sarvices</strin
ton">Install</strin
£ x"Rl§e won't rum without Coogle Play services, which are missing from your devics, "</ srLring:
t Google Play ssrvices</strings
el _nams-rGocgle Play services Mnumuit.y string>
*Google Play services szrez</strls
us">813s is having trouble with Coogle Flay services. Fleass try agalin. ing>
taxb x"R18s won't rum witheut Google Flay serviess, which are mot ’-upperhd h,l your dewies,

Ub-d.lh Erin

#1%s won't run unl.s: you update Gee-glt Flay services </sirings

U’Pd-h Google Play services</slil

8 g_temt">"%1$s won't run without Google r_uy services, which are currently updating.=
8_wear update test ' Mew VeESLon of Coogle PLiy SeEvices needsd. It will update Stself sher 1)‘
& "SOpen of phwu Ffanr

st >Sign imc/stri

axt_long">84gn in WAth Googla</strir

= 'dofa.ut wain rl.lnr. id= !12!"09“?! t‘-tu.luhi:lﬂcﬂaﬂ.ltmpndll APPS . gocgleussrcontant . com</
=*facabosk i”‘D 147 515 40909672882379+

- lu.salll.lnl-wa fsrring>

i- .fizsbassio com</strings

" >BS25E409E8 T4 atring>

ification_channsl_labsl->Miscellansous</string>
r

= -‘qoe-qn np1 n\- SAIZASyUHIEIOEhCANTHLABEDY ---.q
= geegle_spp 4 >1:8525840968TH androld BR0IATT1060aT 38 -
"google_crash_reporting api_key~ u:um’xi:o&muﬁbu_ ng>

'99"’01' storage bucket= _ Appepot . come/
o ill[Gh serd
fo_ove f(.'l »99%<c stri
ant sBoth mpul. and au!p gt UTL must be Specified:/
oto">Edit Photo</string
EPARES. T ¢snu strings
sCrap/

AndroidManifest.xml

The “AndroidManifest.xml” file contains information on the application package, including
components of the application such as activities, broadcast receivers, services, content

providers, etc. This file may contain some sensitive hardcoded strings such as keys, se-
crets, tokens, etc.

Chapter 5 <38/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

action ir i:name="com.google.android.c2dm.intent . RECEIVE" />

ndroid:exg ted="truae" android:name="com.google.firebase.iid.FirebaselnstanceldService">
intent-filter and 1:pr rity JDU
action ir i:name="com.google. firebase. INSTANCE_ID_EVENT"/>

s="gcom.donalddatars. ereba5e1“1tprov1der android:exported="falsa™ andr 1:initOrder="100"

a1 1 "com. google firebase.provider.FirebaselnitProvider"
<activity andr rted="false" andr i:name="com.google.andr o:d gms . common . api .GoogleApiMctivity" and 1: theme=

Ar d:old 5Lylu,|"Tt ame . Translucent. huTllll.rBur

neta |43d android: nar "com.google. android.gms.varsion” android: Finteger/google_play_ services version'
"android. support.VERSION" android:value 26 1.0"/>
"rom o android gonding derived aok 4" nd L 1 Lk 1L
"com,test, API . EEY" android:value="AIzaE L‘r)p3218r1 tqetbnqﬂetnﬂytrngS?rzEui",."-]

Uncovering unencrypted HTTP data in the cache

Why is there HTTP data in the cache folder?

Android applications can keep all kinds of stuff in the cache folder of the package. This
helps to boost the performance of the app. However, sometimes due to misconfiguration,
the application may save sensitive information in the cache folder, more specifically in the
“http-cache” folder.

In the React Native applications, “http-cache” contains the GET-based HTTP request+re-
sponse data. This may expose sensitive data if it is being transferred over an unencrypted
or insecure channel.

Limitations of data in the http-cache folder:

1. Only “GET" based HTTP request+response data is stored in the cache folder of the
application. Post request data is not cached in the cache folder.

2. Only unencrypted (non-https) requests are cached in plaintext. If the URL is having SSL
certificate implemented, then the data will be cached in an encrypted format.

Chapter 5 <39/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Exploit scenario of http-cache folder:

1. Any GET HTTP request is saved in this folder. If the application is sending sensitive data
such as OAuth tokens, credentials, etc. over the GET request type, then we can grab that
data in plaintext.

2. Both request and response headers and their values are cached in plaintext. Thus, if
the application is sending any sensitive information in request/response headers of the
GET request, we can grab that data.

How to test?

1. Open the vulnerable application which has the feature to transfer data in HTTP requests
and issue some HTTP requests.

2. Open a command prompt and start the ADB server as root with the following
command

3. Now access the shell of the device with Els|sBE =188 and navigate to the following di-
rectory

/data/data/<com.package.name>/cache/http-cache

4. Open all files in this folder with EeEkadand you can now scrap through cached data

Chapter 5 <40/92>

Chapter 6

Editing and Patching
React Native
Application

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Modifying and patching React Native applications is relatively easier than Java native
Android applications. As we already learned, when an APK of React Native project is built,
all of the React Native JavaScript code gets compiled into one single file i.e. “index.an-
droid.bundle”.

We have to find the correct piece of code in the “index.android.bundle” file and then we
can modify the code right away. We can find the code block by searching for specific key-
words which we can find in the application. For example, we can search for text (like the
text on the button, touchableopacity, etc.) shown in the Ul of the application to find specific
functions associated with that text.

We can utilize the react-native-decompiler module to analyze the code more efficiently
and then later modify it by referencing it into “index.android.bundle”.

Steps:

There are several ways to edit and patch the React Native Android application. Below are
the two most effective methods demonstrated. You can go with any method as per conve-
nience.

Method 1: Modification using any simple compression tool

1. Open the installed application and you will notice that the counter only increases by 5
digits.

11:14 & & Tin

Counter App

Counter Value: 1340

Challenge: Make counter value 1337 and get the flag

Chapter 6 <42/92>

https://www.npmjs.com/package/react-native-decompiler

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

2. Change the extension of the vulnerable APK to “.zip”

& rnmodify.apkzip

3. Open zip in winzip and open /assets/index.android.bundle. Note that, you have to open the
zip file in WinZip. Extracting and again compressing zip might throw an error.

H&E rmodify.apkzip (evaluation copy)

File Commands Tools Favorites Options Help

ﬂ'ﬁTUQ \®6 = =

Add xtract To Test View Delete Find Wizard Info VirusScan Comment SFX

1 8B rmmodify.apkzip\assets - ZIP archive, unpacked size 40,886,417 bytes

-~

Name Size Packed Type Modified
. File folder
_'L',' index.android.bundle 624,848 322,077 BUNDLE File

5. As per our challenge, we have to change the counter value to 1337. Thus, we will
change the increment value from 5 to 1 so the counter will increase only by 1digit per
button click.

Tip: You can search in code with custom keywords that you see in the application.
Usually, the “hand-written” code can be found at bottom of this file.

Chapter 6 <43/92>

Mastering React Native Application Pentesting: A Practical Guide

yvle: { -
tixt
fants. i 38,
marginTop: 5@
LE]
children: ["Counter walue: ", u]
1, (@, r{d[4]).3sxd(o.Text, {}), (@, r{d[4]).fsx)(o.TouchableOpacity, {
style: f.fleatingButton,
onPress: function() { Finx «
s(u + 3), 1336 == u B& alert
£ "
children: (@, r{d[a]}.jsx){o.Text, { b
style: [Dhaecion Cancel
1::|c(.rJ1|:,|..I”..n1u s W Do
fontSize: 20, Wiap arsrd
fontweight: “bold”
[[children: “[TSREE by = |
P (@, r{d[a]}).jsxs)(o-Text, {
style: {
texta
fonts
Fonti
1)
children: ['\n", "Challenge: Make counter value 1337 and get the flag™]
nl
)]
te
var t = e(d[@]}(r{d[1])).
n = (fumction(t, n) {
if {(In B& t &% t._ esModule) return t;
if (null === t || "object™ I= typeof t E& "function™ I= typeof t) return {
default: t
var o = 1{n);
i i g

6. Now, we have to delete previous signing certificates. Go to the “META-INF" file and de-
lete the following files:

1. CERT.RSA

2. CERT.SF

3. MANIFEST.MF

7. Exit the “winzip” app and rename the file extension back to “APK”

=~ rnmodify.apk

8. Now we need to sign the modified APK with a new certificate. To generate custom cer-
tificate, run following command and fill out the details:

keytool -genkey -v -keystore <keystore_name>.keystore -alias <keystore_
alias_name> -keyalg RSA -keysize 2048 -validity 10000

SRlkeytool -genkey -v -keystore rnmodify.keystore -alias rnmodify -keyalg RSA -keysize 2848 -validity leeee

Zational wnit?

ization?

Chapter 6 <44 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

9. We will sign our APK with the generated keystore. Run the following command and en-
ter keystore password that is set while creating keystore in step 6.
jarsigner -verbose -sigalg SHAlwithRSA -digestalg SHAl -keystore

<my-keyname>.keystore

<modify.APK> <alias_name>

Bjarsigner -verbose -sigalg SHAlwithRSA -digestalg SHA1l -keystore rnmodify.ke)

10. Install the modified APK with adb.

adb install modified.APK
AT A EWE R IAD I Sl el kR a2 2 b install rnmodify.apk

Performing Streamed Install
Success

11. The modified application will be successfully installed.

Alert

flag-{I'm_the_Batmangf}

Chapter 6 <45/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Method 2: Modification using APKtool:

11:14 & @ Pin

Counter App

Counter Value: 1340

Increase by 5

Challenge: Make counter value 1337 and get the flag

1. Open the installed application and you will notice that the counter only increases by 5
digits.

2. Run the following command to decompile the application with APKTool:

APKtool d VulnerableApp.APK

:\Users\payatu\Desktop\Raw>apktool d VulnerableApp.apk

: Using Apktool 2.6.1 on VulnerableApp.apk

: Loading resource table...

: Decoding AndroidManifest.xml with resources...

: Loading resource table from file: C:\Users\payatu\AppData\lLocal\apktool\framework\1.apk

: Regular manifest package...
: Decoding file-resources..

: Decoding values */* XMLs...
: Baksmaling classes.dex...

: Copying assets and libs...
: Copying unknown files...

: Copying original files...

3. Go to “/VulnerableApp/assets” folder and open the “index.android.bundle” file

4. Search for the keywords such as “Increase by 5" and then search for the “onPress”
function. You can copy the entire code and beautify it for convenience.

A
A

Chapter 6 <46 /92>

C@) Mastering React Native Application Pentesting: A Practical Guide

Tip: You can search in code with custom keywords that you see in the application.
Usually, the “hand-written” code can be found at bottom of this file.
L

JavaScript Beautifier Ousor | R |

===_aB&(e=gn,@==(41942408 (gn<<=1))&&(gn=64),_a=e ° Ll fontsize: 30,
},_a;if(@===(e=En))e: {if(nulll=(e=gn?gn():null B Auto Update 2y marginTop: 5@
Y)switch(e){case ¥Yn:esl;break e}esl6}return 31668 3 = =
e}function Ea(e,t,r){if(5&<wa)throw wa=9,xa=null = 31661 I(m.lar‘en: [“Counter Value: “, U]I
LError{“Maximum update depth exceeded. This can 11— Beau‘tlfy_ls 31662 - 1, (e, rfof{]}.]sxh(o.Text, f}jf (e,
happen when a component repeatedly calls F‘{d[”}-JSHJ{O:TOUChthEODﬂCRy, {
setState inside componentWillUpdate or 31663 style: f.fluat:!.ngButt:}n,
componentDidUpdate. React limits the number of 31664 - | onPress: function() {
nested updates to prevent infinite loops.”);var 31665 s(u + 53]
1=Na(e,t);return null===1?null:(wn(1,t,r),1 31666 Ts ;
===1a88(@==(B&ra)&&(fa|=t),d===sa8&Ta(1,ia)),1 31667 - children: (8, r{d[4]).jsx)(o.Text,
=t?0|=(4&ra)k80==(248ra)?La(l):(Ca(l,r),8 {
===ralif==(18e.mode)8&(ga=n(i[2]).unstable_now 31668 - style: {
()+500,kt8&xt())):Ca(l,r),1)}function Na(e,n){e Obfuscator J5 31669 textAlign: ‘center’,
.lanes|=n;var t=e.alternate;for(nulll==tB&(t 31670 cc-lorf ELLL
.lanés|=n),t=e,eze. return;nulll==e; e a. 31671 fontSize: 20,
_childLanes |=n,null |==(tes alternate)EE(t & Download 31672 fontWeight: 'bold’
_childLanes |an),tee,sse. return;return 3ssst. tag 31673 3T
?t.stateNode:null}function Cale,t){for(var r=e 31674 _ | children: "Increase by 5"
.callbackNode,l=e.suspendedLanes,a=e. pingedLanes 31675 i3 :
jom apnSradionTimes seu pesdinad aums:fea: Lo 31676 - 1), (8, r{d[4]).isxs)(0.Text, {
Ln: 409 C size: 744,17 KB TT Lr: 31665 Cel: 13 size: 995.45 KB TT

5. Change the counter value from “5" to “1” in the “index.android.bundle” file.

1 B v 18 " = m . [e o bencie £3

=d"==typeof
n!l;if {("function®==typeof Proxy)return!l;try{r
h(t) {return!l}jvar
or; t=Ref

{c{d[3]) (o,n);var

LO=r{d[0]) [I.‘J.f.
r(d[1]) {this, t)}) ;funcei

r{d[5]) (o, [{key:"render™,

rn

null}}l, [{key:"ignoreWarni (t){}}: (key:"install",value:function () {}}, (key: "uninstall®,value: function{) {}}]).ol}) (r{d[2]) .Co
went) ,m.exports=n}, 395, [15,12,12 81} ;
(functionig,r,i,a,m,e,d) {Object.de Froperty (e

new Error('DynamicColorI0OS is not available on this
_ d{functionig,r,i,a,m,e,d) {Object.defineProperty(e,™ esModule",{value:!0}),e.default=function() (var

1= (0, n.usestate) (1320) ,c=(0,t.default) (1,2) ,u=c[0]),s=c[1] ;return(0,r(d[4]) -jsxs) (o.View, (s3tyle: {textAlign: "center’),children: [(0, r (d[4])-j5x
) (o.Text, {style: {textAlign:'center’, fontSize:50, marginTop: 50}, children:"Counter
App®™}), (0,x(d[4]).33%) (o.Image, {sour r({d[5]),style: {width:190, height:200, alignSelf: "*center*}}), (0, r(d(4]).
center”, fontSize:30,marginTop: 50),children: ["Counter Value:
".ulll, (0, c(d[4]).]isx) (o.Text, {}), (0, r(d[4]).]jsx) (o.TouchableOpacity, {style:f.floatingButton onPress: function() {s{u+l) }} children: (0, r (d[4]).
j=sx) (o.Text, {style: [textAlign: "center’,.color: "#Efff"', fontSize:20, fontWeight: "bold"} ildren: rease by

5”121}, (0, x(d[4]).]5x3) (o.Text, {style: ({textAlign:'center", fontSize:15, fontWeight: "bSTA J, CHLIALen: [W', Challenge: Make counter value 1337
and get the flag™1i)1}));: C=r (d[0]) (£(d[1])),n=(function(t,n) (if(!n&&t&er. esModule)return t;if (nUll===t||"object™!=typect
tEe"function”!=typeof t)return{default:t};var o=1(n):;if (ock&o.has(t))return o.get (t):var
f={},c=0Object.defineProperty&iiObject.getOwnPropertylescriptor; for(var u in

t)if ("default"!==ugsdbject.prototype.hasOwnProperty.call (t,u)) {var

I
%) {o0.Text, {style: {textAlign:"*

6. Save this file and run the following APKTool command:

APKtool b VulnerableApp

7. Modified APK will be generated in the “/VulnerableApp/dist” folder.

8. Go to this folder and create a keystore with the following command:

keytool -genkey -v -keystore <keystoreName>.keystore -alias <key-
storeAlias> -keyalg RSA -keysize 2048 -validity 10000

Chapter 6 <47/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

9. Sign the APK with “jarsigner”.

jarsigner -verbose -sigalg SHAlwithRSA -digestalg SHAl1l -keystore
<keystoreName>.keystore VulnerableApp.APK <keystoreAlias>

10. Install the signed application with:

adb install VulnerableApp.APK

11. Open the application and you will be able to increase the counter by 1 digit now.

Alert
flag-{I'm_the_Batmanigf}

Note: You can use either methods demonstrated above to modify and patch the React Na-
tive application.

A
A

Chapter 6 <48/92>

Chapter 7

Moditying Hermes
Bytecode

<49/92>

@) Mastering React Native Application Pentesting: A Practical Guide

When you decompile the React Native application that uses Hermes during compilation,
the code in the “index.android.bundle” file will be converted into Hermes code. The con-
tents of the file will look like this:

] dex sndroed bencta £

L PRS0 AN
S R ST AT T (R T TG TN | S [T TAR e R
FTATATIFA - ST I AT T T T T T T

R e SIS SIS N ST | VARG AT . AT ATIIRES | SRR NI . RS | Geieh
R -, RO | WIS <~ AR e < N - AR RS SR G N - o (AN | SRS <

Understanding Hermes bytecode

As of now, there is no way to convert disassembled Hermes bytecode to readable JavaS-
cript code. We have to understand the bytecode in bits and pieces in order to modify the
behavior of a specific function and eventually of the application. The bytecode consists of
a bunch of constants and functions which make up the logic of the application.

Chapter 7 <50/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

Let's look at some key elements in the Hermes bytecode
and try to make some sense:

® Oper[1l]: String(strNumber) This constant contains all strings either added by
the user during development or strings of various JS libraries. But most of the time, this
constant contains strings that we should look for. Examples of the strings are below:

Tip: Always search from the bottom of the “instructions.hasm” file to find strings
that are added by the developer during development.

] te'
Regi:7, F ITntH:]
i) tyle
LoadCon=tString Begi-1, UTotl&:1381
; |OpEE (1] SEringil136l) "Increase to 1337 for getting a flag'
Reg#:16, RegB:9, RegB:10, Regf:8, Reg#:7, RegB:l
Reg8:7, RegB8:11, UInt#:5
Reg8:10, RegB:7, Ulnt8:3, UInt8:147
‘defa
té:4, UIntf:144
- 1
broken. ' |
XnX2 EPIELS1omi i
Ling £1 |
= 0 1
= I the L
decoded i 4

® createElement: “createElement” string value refers to the JSX element which is
created in React Native. Refer below side by side comparison of the JSX code and the
Hermes bytecode:

React Native JSX code Hermes Bytecode
L - _- 817, Khg1e I
.

A

Chapter 7 <51/92>

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

® LoadConstInt: This element stores all integer values created within the application.

LoadConstInt Reg8:1,| Imm32:1336

~JNotGreaterbqual Rddr8:43, RegB:Z, Reg8:1
GetGlobalObject Regf:1
TryGetById RegB:2, RegB8:1, UInt8:3, UIntle:3716

; Oper[3]: String(3716) 'alert'

LoadFromEnvironment RegB8:4, Reg8:0, UInt8:0
GetById Reg8:3, Regf:4, UInt8:5, UIntl6:4072
; Oper[3]: String(4072) 'decrypt’

LoadConstString Reg8:1, UIntl6:1724
; Oper[l]: String(1724) 'ZXxZt3UWNXVYadJd2XJZzm25vJIFX93ZXn¥X2fhzZP3Z2I51omX0k20=hJpt"

LoadConstString Reg8:0, UIntlo:219
; Oper[l]: String(219) 'onPress'

Call3 Reg8:1, Reg8:3, Regb:4, RegB:1, Reg8:0
LoadConstUndefined RegB:0
Call2 Reg8:0, Reg8:2, Reg8:0, Reg8:1
LoadConstUndefined RegB8:0
Ret Reg8:0

idFunction

inction<>3846 (1 params, 20 registers, 0 symbols):

LoadThisNS Reg8:3

LoadConstUndefined RegB:2

LoadConstUndefined Regf:4

60 hits)

LoadConstInt RegB8:2, Imm32:4294967295
LoadConstInt Reg8:0, Imm32:4294967295
LoadConstInt Reg8:6, Imm32:400
LoadConstInt RegB:4, Imm32:4294967295
LoadConstInt RegB8:1, Imm32:1336

e Relational Operators identification:

The instruction code has different keywords for relational operators. Below are some of
the important keywords of relational operators and their meanings.

Keyword Operator Meaning

JEqual == Equal to

JNotEqual |= Not equal to

JLess < Less than

JGreater > Greater than
JLessEqual <= Lesser or equal than
JGreaterEqual >= Greater or equal than

A
A

Chapter 7 <52/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Keyword Operator Meaning

JNotLessEqual l<= Not lesser or equal than
JNotGreaterkEqual I>= Not greater or equal than
JEquallLong == Equal to long data type
JNotEquallLong I= Not equal to long data type
JStrictEqual === Strict Equal to
JStrictNotEqual |== Strict not equal to

® Find a function name with a string: We can search for any specific function with the
help of a string.

0 For example, look at the application screenshot below:

d Emulator - Copy_of_Pixel_2_XL_API_28_forReact 5554

Alert

Increase button has already been broken.

Chapter 7 <53/92>

o

We can search with any keyword in the string shown in the screenshot below:

[= a | mwrucion basm [

LoadFromEnvi
Idshort

t8:1, Ulnt8:151

per[3]: String(l151)

B:2, UIntl6:2795

GetById Ric

¢ Oper[3]: String(2795) 'counter®
[swdhwvard direchon

[CTmtateh sk wesrd oridy

Regf:1, UInt8:10 I
Addr 5 Regl:1, RegB:2 | Mateh gase
- 2w arsung

Regfi:1, UInt8:3, UIntl6:3716 Seaich Mods

W tormal

; Oper[3]: String(3716)
Eatended (o, ', e ' 1

Birgusar Frpt e

Regfi:2
tri RegB:l
String (787) 'Increase button has already been broken.

LoadC
LoadConsts
; Oper[l]:

tUndefined
tri UIntlé&:787

call? RegB:2, RegH:l
Jmp
LoadFromEnvironment
setByIdShort

Oper[3]: String(242)

B:4, Ulnt8:242

NewObject
LoadFromEnvironment
GetByIdShort

; Oper[3]: String(l51)

UInt8:0
UInt8:1, UInt#:151

*state’

bl Transperency
& 0 lasing foam
Abvaryy

o

Copy the ID of the function as shown above and search for this ID in the file.

(= o= | mawucton hasm £
] LoadFromEnviron @:0, UInt8:
CreateC ure :0, UInt 3844
PutById , UInt8:2, UIntle:4072

; Oper[3]: string(4072)
DInt:(

UInt16: 3848 |

., JIntB:3, UIntlé:4418

LoadFromEnyironment
|!.'r(‘r:lt('|'.'1<351'|1'0‘
PutEyId

; Oper[3]:

String (4418)
LoadFromEnvironment UIntg:o0
Ret
EndFunction

Function<»>3844 (3 params, 21
Seaarh resuls - (§ haty)

Search "3845" (6 hita in 1 file of 1 searched)
F:i\React HWative Development\React Native PentestiVuln apps'\Blog APRs\raw'\ocutput\instruction hasm (& hita)

0 You will get the name of the function. For reference, here
son of React Native JSX code and Hermes bytecode

A
A

Chapter 7

Is side by side compari-

<54/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

The Comparison:

React Native JSX code of “onIncrement” Hermes Bytecode of the “onIncrement”
function: function:

Function<>3845(1 params, 15 registers, 0 symbols):_

onlncrement

GetEnvironment Reg8:0, UInt8:0
.state.counter LoadFromEnvironment Reg8:1, Reg8:0, UInt8:0
alert("Incre: itton has already beer ken." GetByIdShort RegB:1, Reg8:1, UInt8:1, UInt8:151
eI ; Oper[3]: String(l5l) 'state"
GetById Reg8:2, Reg8:1, UInt8:2, UIntl6:2795
; Oper[3]: String(2795) 'counter
.setState({ LoadConstUInt8 Reg8:1, UInt8:10
inter: .state.counter + 1, JNotEqual Addr8:25, Reg8:1, Reg8:2
GetGlobalObject Reg8:1
TryGetBylId Reg8:3, Reg8:1, UInt8:3, UIntl6:3716
; Oper[3]: String(3716) 'alert
.state.counter
g ey car LoadConstUndefined Reg8:2
ag > LoadConstString Reg8:1, UIntl6:787
alert(.decrypt(flag, nPr : ; Oper[l]: String(787) 'Increase button has already been broken.
call2 Reg8:3, RegB:2, Reg8:l
Jmp 108
LoadFromEnvironment Reg8:0, UInt8:0
GetByIdShort Reg8:2, Reg8:3, UInt8:4, UInt8:242

; Oper[3]: String(242) 'setState

NewObject
LoadFromEnvironment UInt8:0
GetByIdShort UInt8:1, UInt8:151

; Oper[3]: String(151) ‘'state"

GetById Reg8:5, Reg8:4, UInt8:2, UIntl6:2795
; Oper[3]: String(2795) 'counter

LoadConstUInt8 UInt8:1

Add Reg8:5, Reg8:4

PutNewOwnById Reg8:4, UInt16:2795

; Oper[2]: String(2795) 'counter

callz
LoadFromEnvironment
GetByIdShort

; Oper[3]: String(l51) 'state'

Reg8:2, Reg8:3, Reg8:1
Reg8:0, UInt8:0
Reg8:1, UInt8:1, UInt8:151

GetById Reg8:2, Reg8:1, UInt8:2, UIntl6:2795
; Oper[3]: String(2795) 'counter'

LoadConstInt Reg8:1, Imm32:1336

JNotGreaterEqual Addr8:43, Reg8:2, RegB8:1
GetGlobalCbject Reg8:1

TryGetById Reg8:2, Reg8:1, UInt8:3, UIntl6:3716

; Oper([3]: String(3716) 'alert'

LoadFromEnvironment Reg8:4, Reg8:0, UInt8:0
GetById Reg8:3, Reg8:4, UInt8:5, UIntl16:4072
; Oper[3]: String(4072) 'decrypt'

LoadConstString Reg8:1, UIntl6:1724
; Oper[1l]: String(1724)
' ZXxZt3UWNXVYadJ2XJZzm25vIFX93ZXnX2fhzZP3Z2I51omX0k20=hJpt '

LoadConstString Reg8:0, UIntl6:219
; Oper[l]: String(219) 'onPress'

Call3
LoadConstUndefined
Call2
LoadConstUndefined
Ret

EndFunction

. Reg8:3, RegB8:4, RegB:1, Reg8:0

, Reg8:2, RegB8:0, Reg8:l

0 This way we can link any function with its properties.

A
A

Chapter 7 <55/92>

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

If you want to learn more about Hermes bytecode, there is a great playground for it:
hermesengine.dev

/= Hermes Docs

-0 -dump-bytecode

Now, let's disassemble/assemble the obfuscated code into bytecode.
Steps:
Note: We will solve a challenge created by “bongtrop”. More info here: “suam.wtf”

1. Install the vulnerable application and you will get the following screen:

A
A

Chapter 7 <56/92>

https://hermesengine.dev/playground/
https://twitter.com/bongtrop
https://suam.wtf/posts/react-native-application-static-analysis-en/

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

823 & D @ A\

Counter: 0
Increase to 1337 for getting a flag

2. We have to increase counter value to 1337 in order to get the flag. But if we do try to

increase the counter value with the “+" button at the bottom, we get the following error:

Alert

Increase button has already been broken.

Chapter 7 <57/92>

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

3. This means we have to directly set the counter value as 1337.
4. Change the extension of .APK file to .zip and open this file with winzip.

5. Go to the “/assets/” folder and copy the “index.android.bundle” file in any folder on the
system.

ﬂ HermesReversinglab.zip (evaluation copy)

File Commands Tools Favorites Options Help

B EOdme \® @ 8 5

Add Extract To Test View Delete Find Wizard Info VirusScan Comment SFX

4 ﬂ HermesReversinglLab.zip\assets - ZIP archive, unpacked size 40,886,417 bytes

—

Name Size Packed Type Modified
File folder

[®findex.android.bundle 322,077 BUNDLE File

Select all Ctri+A
Copy files to clipboard Ctrl+C
Copy full names to clipboard

Add files to archive Alt+A
Extract to a specified folder Alt+E
Extract without confirmation Alt+W
Delete files Del
View file Alt+V

Create a new folder

Rename

6. If you open this file, you will find a gibberish code.

| index.android.bundle - Notepad

File Edit Format View Help
leaimy 01

“"hR+i!R.Dr [qhud” Mo 0 si D W7 0 0 0 ¢ w HE 6ol
€xlx~ WF0 €- x~ 0 Dl f x~ D007G0L O x~ QOGN & x~ » DOEU 1€ x~ " Dy0$€e9 "~ 0 My ME "~

0} p la€=)"~

Dy M)~ I Oy €xl™~ 0 ey 0t "~ 2 [°mmod "~ 0 AD &)~ » I = Dea"~ 1 oo?

€2~ Lm3€9 "~ 010 D00 "~ f "€z]"~ W 7O0E- "~ <[es "~ M xDnez]"~ 0 1mel- "~
8, "~ 0 T MF ~00 . D0®3 ~@d 3

Dvez]"~ . 3

MEd "~ 61 #

i

€~ 1 e

il

€~ 0 =

D€ "~ " @

Dre=z]"~ 00 !0D & "~ i} 1MDef ~~] <On % "~ D Lm Z "~ [wil'eg "~ 1 A~ & T~ 0 -1 €l "~
0 & "~ 0 mm'e- "~ 10 (IXed "~ 00 Miloe=]"~ 1 e~ 2]

0 o€l "~ [A€zl «Me€z]"~ =0 .M&ea)~ 00 TOODEx] ™~ 0 "0; A~ I Omo @™~ 0 o
€™~ 0 kilt€x]"~ 0 0 RDE, ~~ amp <™~ D ol -0~ i ="~] o 30~ 0 ODageH]"~
207 1A~ "0 éD0 ElA~ ¢z A~ 0 RO yexlA~ (0 ED n€xli~ [l (oD €axli~ * [(2MmexlA~ (0 Ie
€l 0 exlA~ 0 0 jiDexjA~ 00 YE..20A~ 0 DD DA~ 0 D00 VIA~ 0 0¢0eJA~ 0 000 -€40A~
1400 0A~0 [O0 B€@lA~ 0 0500 ¥A~ [LJ0eviA~ 0 0006 A~ 0 Dol 0€S A~ I 00- AA~ mo = A~
K] - a A~ bl é A~ 000°0- &~ D -€1 A~ il A~ 0

O0ejlA~0 0(00 §0A~ 0 [Oc[-€DA~ Ip - "MA~ 0 00€p A~ 0 0,003A~ 1 000@A~ 0 0i00 ek~
1% 10 €OlA~ 0 02000 10A~ 0 0z!0De20A~ 0 DullB€20A~ I Dm0 ah~ 0 0«00 blA~ 0 0s100 flA~ 1 &l
A~ 0 0il00e” A~ 0 000l A~ 0 02"00 % A~ 0 M"00.A~ 0 h"00 ulA~ I 000 - A~ 0 02"01- 2A~
fe"] -€Y A~ M) -€3 A~ [@a] leé A~ 0 0#00 A~ 0 Ovad fealA~ 0D 0#llesA~ 0 (0-#0! BA~ 0001400
A g0 €0 A~ 0 e$i0 s A~ 0 Ik$Dleo A~ D Of$00SA~ 0 (800 @A~ I Oe$) € A~ D0 DisllE A~
10300 50A~ 010

%10 aA~0 ((%0 3 A~ 0 Dck) -€“JA~ (p%) j€§0A~ D 00 DA~ 0 0% -€fA~ [6%] [€ (A~ 0 0i%) 0 (A~

A
A

Chapter 7 <58/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

7. Let's convert this mess into a bytecode. Install hbctool with the following command:

pip install hbctool

8. Open command prompt in folder where “index.android.bundle” file is pasted and run the
following command to disassemble the file:

//hbctool disasm <path-to-index.android.bundle> <output-folder>
hbctool disasm index.android.bundle output

“ME WAITING

FOR nEsuus__;i'

[V

C:\Users\payatu\Desktop\rnmodify>hbctool disasm index.android.bundle output

[*] Disassemble 'index.android.bundle' to 'output' path

[*] Hermes Bytecode [Source Hash: d@310a88a868dfblee21d12e9011725b1f716875, HBC Version: 74]
[*] Done

A
A

Chapter 7 <59/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

9. Go to the “output” folder created and there you will find “instructions.hasm” file. You will
find all the React Native application’s JS code in bytecode format.

[H instruction.hasm E3]
182837 ; Oper[3]: String(190) 'join'

call2 Regf:0, RegB:0, Reg8:3, Regf:4
182840 Callz Reg8:0, Reg8:1, Reg8:2, Reg8:0
1 41 Ret Reg8:0
162842 EndFunction

; Function<>3845(1 params, 15 registers, 0 symbols):
45 GetEnvironment Reg8:0, UInt8:0

182846 LoadFromEnvironment Reg8:1, RegB:0, UInt8:0
82847 GetByIdshort Reg8:1, Reg8:1, UInt8:1, UInt8:151

; Oper[3]: String(151) 'state'

1 GetById Regf:2, RegB:1, UInt8:2, UIntlé6:2795
182851 ; Oper[3]: String(2795) 'counter'

182853 LoadConstUInt8 Reg8:1, UInt8:10
182854 JNotEqual Addr8:25, RegB:1, RegB:2
182855 GetGlobalObject Reg8:1
82856 TryGetById Reg8:3, RegB:1, UInt8:3, UIntl6:3716

; Oper[3]: String(3716) 'alert'

1 LoadConstUndefined Regf:2
182860 LoadConstString Reg8:1, UIntlé6:787
; Oper[l]: String(787) 'Increase button has already been broken.'

1 63 call2 Reg8:1, RegB8:3, RegB8:2, RegB8:1
182864 Jmp Addr8:109
82865 LoadFromEnvironment Reg8:3, RegB8:0, UInt8:0
GetByIdShort Regf8:2, RegB:3, UIntB8:4, UInt8:242

18286 ; Oper[3]: String(242) 'setState’

182869 NewObject Reg8:1
1 i LoadFromEnvironment Regf8:4, RegB8:0, UInt8:0
182871 GetByIdShort Reg8:4, Reg8:4, UInt8:1, UInt8:151

; Oper[3]: sString(151) 'state'

74 GetById Reg8:5, Reg8:4, UInt8:2, UIntl6:2795
i ; Oper[3]: String(2795) 'counter'

A
A

Chapter 7 <60/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

A
A

& Payatu

10. As we have to increase the counter value to 1337, first find the function that deals with
the counter value. We can search with keywords of the error “Increase button has already

been broken.”

Chapter 7

GetEnvironment
LoadFromEnvironment
GetByIdShort

; Oper([3]: String(151)

GetById
; Oper[3]: String(2795)

LoadConstUInt8
JNotEqual
GetGlobalObject
TryGetById

; Oper[3]: String(3716)

LoadConstUndefined
LoadConstString

; Oper[l]: String(787) |'Increase button has already been broken.ﬂl

call2

Jmp
LoadFromEnvironment
GetByIdShort

; Oper[3]: String(242)

NewObject
LoadFromEnvironment
GetByIdShort

; Oper[3]: String(151)

GetById
; Oper([3]: String(2795)

LoadConstUInt8

Add

PutNewOwnById

; Oper[2]: String(2795)

call2
LoadFromEnvironment
GetByIdShort

; Oper([3]: String(151)

[Function<>3845|1 params, 15 registers, 0 symbols):

Reg8:0, UInt8:0

Reg8:1, Reg8:0, UInt8:0

RegB8:1, Reg8:1, UInt8:1, UInt8:151
'state’

Reg8:2, RegB8:1, UInt8:2, UIntle:2795
'counter'

Reg8:1, UInt8:10

Addr8:25, RegB:1, Reg8:2

Reg8:1

Reg8:3, Reg8:1, UInt8:3, UIntl6:3716
'alert'

Reg8:2
Reg8:1, UIntl6:787

Reg8:1, RegB8:3, Reg8:2, RegB:1l
Addr8:109

RegB8:3, Reg8:0, UInt8:0

Reg8:2, RegB:3, UInt8:4, UInt8:242
'setState’

Reg8:1

Reg8:4, RegB:0, UInt8:0

Reg8:4, Reg8:4, UInt8:1, UInt8:151
'state’

Reg8:5, RegB:4, UInt8:2, UIntlé6:2795
'counter'’'

Reg8:4, UInt8:1

RegB8:4, RegB8:5, RegB:4
Reg8:1, RegB8:4, UIntle:2795
'counter'

RegB8:1, Reg8:2, RegB8:3, Reg8:1
Reg8:1, Reg8:0, UInt8:0

Reg8:1, Reg8:1, UInt8:1, UInt8:151
'state’

<61/92>

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

11. As observed above, the counter breaks when we try to increase the counter value be-
yond 10. Thus, the application is performing a “Relational operation” to verify if the counter
value is greater than 10 or not.

|Function<>3845|1 params, 15 registers, 0 symbols):

GetEnvironment Reg8:0, UInt8:0
LoadFromEnvironment Reg8:1, Reg8:0, UInt8:0
GetByIdShort Reg8:1, Reg8:1, UInt8:1, UInt8:151

; Oper[3]: String(151) 'state'

GetById Reg8:2, Reg8:1, UInt8:2, UIntl6:2795
; Oper[3]: String(2795) 'counter’

LoadConstUInt$S Reg8:1, UInt8:10

JNotEqual Addr8:25, Reg8:1, RegB8:2
GetGlobalObject RegB: 1

TryGetById RegB8:3, Reg8:1, UInt8:3, UIntl6:3716
; Oper[3]: String(3716) 'alert'

LoadConstUndefined Reg8:2

LoadConstString RegB8:1, UIntlé:787

; Oper[l]: String(787) rIncrease button has already been broken.'

Call2 Reg8:1, Reg8:3, Reg8:2, RegB:1

Jmp Addr8:109

LoadFromEnvironment Reg8:3, Reg8:0, UInt8:0
GetByIdShort RegB8:2, Reg8:3, UInt8:4, UInt8:242

; Oper[3]: String(242) 'setState’

NewObject Reg8:1
LoadFromEnvironment Reg8:4, Reg8:0, UInt8:0
GetByIdShort Reg8:4, Reg8:4, UInt8:1, UInt8:151

; Oper[3]: String(151) 'state'

GetById Reg8:5, Reg8:4, UIntB8:2, UIntlé6:2795
; Oper[3]: String(2795) 'counter'

LoadConstUInt8 Reg8:4, UIntS8:1
Add Reg8:4, RegB8:5, RegB8:4
PutNewOwnById Reg8:1, RegB8:4, UIntlé6:2795

; Oper([2]: String(2795) 'counter'

callz Reg8:1, Reg8:2, Reg8:3, Reg8:1
LoadFromEnvironment Reg8:1, Reg8:0, UInt8:0
GetByIdShort Reg8:1, Reg8:1, UInt8:1, UInt8:151

; Oper[3]: String(1l51) 'state'

12. Instead of increasing the value of the counter, we can change target value i.e. 1337 to 4.
For this, we have to find the relational operator in the same function which is checking if
the counter value is greater than 1336 or equal to 1337 or not.

A
A

Chapter 7 <62/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

A
A

GetById

LoadConstUInt8
Add
PutNewOwnById

call2
LoadFromEnvironment
GetByIdShort

GetById

Regd:5, Reg8:4, UlntG:Z, UIntlo:Z2755

; Oper[3]: String(2795) 'counter'

Reg8:4, UIntB8:133
Reg8:4, RegB8:5, Reg8:4
Reg8:1, Reg8:4, UIntl6:2795

; Oper[2]: String(2795) 'counter'

Reg8:1, RegB8:2, Reg8:3, RegB:1
Reg8:1, Reg8:0, UInt8:0
Reg8:1, Reg8:1, UInt8:1, UInt8:151

; Oper[3]: String(l51) ‘'state'

Reg8:2, RegB8:1, UInt8:2, UIntlé:2795

; Oper[3]: String(2795) 'counter'

LoadConstInt | Reg8:1, Imm32:1334|
JNotGreaterkqua AddrB8:43, RegB:2, Regh:l
%EEETBEETBEEEEEH RegB:1

TryGetById

Reg8:2, RegB8:1, UInt8:3, UIntlé:3716

; Oper[3]: String(3716) 'alert’

LoadFromEnvironment
GetById

; Oper[3]: String(4072) 'decrypt'

Reg8:4, RegB8:0, UInt8:0
Reg8:3, RegB8:4, UInt8:5, UIntlé:4072

LoadConstsString

Reg8:1, UIntl6:1724

; Oper[l]: String(1724) 'ZXxZt3UWNXVYadJ2XJZzm25vJFX93ZXnX2fhzZP3Z2I51lomX0k20=hJpt"

13. We have found a relational operation that is saying if the counter value reaches 1336 or
above, then decrypt and alert the flag. (Note that the flag is encrypted in this case). Thus,

we can change this value from 1336 to 10 or less. We are changing it to 4 here.

NewObject Regb:1
LoadFromEnvironment RegB:4, RegB8:0, UIntB8:0
GetByIdshort Regf:4, Reg8:4, UIntB8:1, UInt8:151

; Oper[3]: String(151

GetById
; Oper([3]: String(2795)

LoadConstUIntsg

Add

PutNewOwnById

; Oper[2]: String(2795)

Call2
LoadFromEnvironment
GetByIdShort

; Oper[3]: String (151

GetById
; Oper[3]: String(2795)

'state’

Reg8:5, Reg8:4, UInt8:2, UIntl6:2795
'counter’

Reg8:4, UInt8:133

Reg8:4, Reg8:5, RegB8:4
Reg8:1, Reg8:4, UIntlé€:2795
'counter"

RegB8:1, RegB8:2, Reg8:3, RegB:1
RegB:1, RegB8:0, UIntB8:0

Regf:1, Reg8:1, UIntB8:1, UInt8:151
'state’

Reg8:2, RegB8:1, UInt8:2, UIntl6:2795
'counter’

ILoadConstInt RegB:1, Imm32:q

[JRotGreaterEqual | Addrg:43, Regt:2, Regf:l
GetGlobalObject Reg8:1

TryGetById Reg8:2, Reg8:1, UInt8:3, UIntle6:3716
; Oper([3]: String(3716) 'alert'

LoadFromEnvironment
GetById
; Oper[3]: String(4072)

RegB:4, RegB8:0, UIntB:0
Regf:3, Reg8:4, UIntB8:5, UIntlé:4072
'decrypt'

LoadConstString RegB:1, UIntl6:1724
; Oper[1]: String(1724) 'ZXxZt3UWNXVYadJ2XJZzm25vJFX93Z2XnX2fhzZP372I5lomX0k20=hJpt"
0 This means, if the counter value reaches greater than 4 then we will get the flag.
Chapter 7 <63/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

14. Save this file after making any changes and open the “.zip” file of the APK.

15. Now, we need to assemble the index file back to Hermes bytecode format.

16. Open a command prompt and run the following command:
//hbctool asm <folder-with-instructions.hasm-file> index.An

droid.bundle

hbctool asm output index.android.bundle

:\Users\payatu\Desktop\rnmodify>hbctool asm output index.android.bundle
Assemble 'output' to 'index.android.bundle' path

]
*] Hermes Bytecode [Source Hash: d@310a88a868dfblee21d12e9911725b1f716875, HBC Version: 74]
] _

17. Go to “/assets” folder. Delete the original “index.android.bundle” file and paste this
newly created file there.

18. As usual, we also need to remove the signature files. Go to the “/META-INF" folder and
remove the following files:

0 CERT.RSA
0 CERT.SF
0 MAN I F EST M F -E HermesReversinglLab.zip (evaluation copy)
File Commands Tools Favorites Optiops Help
BoOoDiie \© 0 &8 =
Add ExtractTo Test View Delete Find Wizard Info VirusScan Comment SFX
O | HermesReversingLab‘zilP archive, unpacked size 40,886,417 bytes
Name " Size Packed Type Modifi
androidx.drawerlayout_drawerlayout.version 6 6 VERSION File
| androidx.fragment_fragment.version 6 6 VERSION File
| androidx.interpolator_interpolator.version 6 & VERSION File
| androidx.legacy_legacy-support-core-ui.version 6 & VERSION File
| androidx.legacy_legacy-support-core-utils.version 6 6 VERSION File
androidx.lifecycle_lifecycle-livedata.version 6 6 VERSION File
androidx lifecycle_lifecycle-livedata-core.version 6 6 VERSION File
| androidx.lifecycle_lifecycle-runtime.version 6 & VERSION File
| androidx.lifecycle_lifecycle-viewmodel.version 6 & VERSION File
| androidx.loader_loader.version 6 & VERSION File
androidx.localbroadcastmanager_localbroadcastmanager... 6 & VERSION File
androidx.print_print.version 6 & VERSION File
androidx.slidingpanelayout_slidingpanelayout.version 6 & VERSION File
| androidx.swiperefreshlayout_swiperefreshlayout.version 6 6 VERSION File
| androidx.vectordrawable_vectordrawable.version 6 6 VERSION File
androidx.vectordrawable_vectordrawable-animated.version 6 6 VERSION File
androidx.versionedparcelable_versionedparcelable.version 6 & VERSION File
androidx.viewpager_viewpager.version 6 6 VERSION File
| CERT.RSA 1,367 1,074 RSA File
CERT.SF 54,330 15,755 SF File
MANIFEST.MF 54,287 15,049 MF File

A
A

Chapter 7 <64/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

19. Exit the “winzip” app and rename the file extension back to “.apk”

20. Now we need to sign the modified APK with the certificate. To generate a custom cer-
tificate, run the following command and fill out the details:

keytool -genkey -v -keystore <keystore_name>.keystore -alias <key-
store_alias_name> -keyalg RSA -keysize 2048 -validity 10000

21. We will sign our APK with the generated keystore. Run the following command and
enter the keystore password that is set while creating the keystore in step 6.
jarsigner -verbose -sigalg SHAlwithRSA -digestalg SHAl1l -keystore
<my-keyname>.keystore <modify.APK> <alias_name>

A
A

Chapter 7 <65/92>

C@ Mastering React Native Application Pentesting: A Practical Guide ") Payatu

22. Install the modified APK with adb and the modified APK file will successfully get in-
stalled.

adb install <modified.APK>

23. Increase the counter value by tapping “+"” button 5 times and you will get the flag.

Alert

flag{Hermes_Reversing_is_not_hard_right?}

OK

Understanding and analysing the Hermes bytecode can be a hassle. However, there are
certain patterns in the bytecode that help us understand the flow of the functions, meth-
ods, and constants.

Root detection bypass

In React Native applications, the JailMonkey npm package is widely used for detecting
rooted Android devices. It is also used to detect mocked locations, hooking statuses, and
some basic integrity checks of the device.

What is JailMonkey?

JailMonkey is a third-party npm package that provides functionality to check or detect
whether the device is rooted or not. It utilizes API “isJailBroken” to check the root status

Chapter 7 <66/92>

C@) Mastering React Native Application Pentesting: A Practical Guide 9 Payatu

of the device by checking various pieces of information throughout the device such as
whether “su” binary exists in the device, whether “busybox” is installed, alternate paths
for “su” binaries. etc.

We can bypass this check by modifying the “isJailBroken” function in the “index.android.
bundle” file. The steps to do it are shown below.

Note: Always try to modify the function instead of removing it altogether as there might
have been some references in rest of the code.

Steps:
1. Open the vulnerable application and you will see it detecting the root status of the de-
vice.

929 & @ Vinm

Root Detection

Root Status:
This device is ROOTED

A
A

Chapter 7 <67/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

2. Now change the extension of the APK file from “.apk” to “.zip" and open this file with any
file compression tool such as 7z, winzip.

3. Open “/assets/index.android.bundle” file and search for isJailBroken keyword. You can
search the below keyword for reaching the correct code line:
isJailBroken: function()

[mdex anciosd tundie

. colo

#DC143C" ,alignSelf:"ce: : ["Root =
Detection™, "\n\n"] }), {0,z (d[E]) . -Text, {style: {fontSize:29, fontWeight: 'bold", textAlign: 'center’,color: "#DC143C", ¢ AlignVertical:'cent

(textali
)retur
1 1l.get (L) ;jvar

er’, color 1d
('nE&TEET.

if(l&&l.has

rtical:'center'},ch

=tion
.qrtc;-.mi

1=f70bject.
var t=r{d[1)).n=r [|J[/]] (x l lIi-J]..llr.(u
sreturn{o=function(t) {return t?l

reate ([container: {f
sborderRadiu

neProperty (¢, s,u):
nullivar

sl&61 58t (L,) 1) (2 (d[0]));
We u}“l‘lln

i'center”), rootImgst
.al lqn.\r" }.397,[128,1,3,398,3
|Vﬁ]1]ﬁ :!0}) ,e.default=void 0;var
\re.\!-udu]ex.\]a] IMonkey; null==0§&con 11M¢)“|<f-'\|' iz not available, check your native dependencies have linked

ire your app has been rebuilt");var t={(jailBroke unction() {return

o.jailBrokenMessage| |*"} fisJailBrok function() {return o.isJailB cted: function () [return

o.hookDetected] | ! 1}, canMockLocation: function () {return o.canMockLoca Fall: function () (return

o.isJailBroken| lo.canMockLocation||'1}, isOnExternalStorage: function () {return o.iszOnExternalStorage| |!1), isDebuggedMode: function () {return
o.1isDebuggedMode () }, isDevelopmentSettingsMode: funetion () {return®android™ !==n.Plat form.05?Promise. resolve (!1) :0. isDevelopmentSettingsModea() |,
.ﬂ.ri};[—:mhle‘ 1: fu ulm {}1;otm—n o. Mhr,nm,]gxdnv1n;»,ue~r‘\.m_g1, 398, [1]):

: (width
+401,176]

90,height: 370, borderColor:™

verLocation:"/as.

s/img",width:640, height: 640, scale

h[(JIP
1d81

ServerLocation:"/as. ale

s/img",width:640, height: 36

nction(o,t,e,d,a,n,r){a.export:
__ri52);
_rioy:
fiE so

rceMappingURL=index.android.bundle.map

4. Modify the function as shown below:

= edunancrond buncte
So-1) faol - T TONaET i _ — tyar

t)if ("default™! D ALv.c.all[L s?]{vax
u=f?0bject.getOwnPropertybescrip tor (t uks (u. l;m, I lu.set)?0bject .defineProperty(c,s,u):c
=r(d[1]),n=e{d[2])) (c(d[3])}):L 5
) turn (o=fun on(t) {return

in A

[z]=t[s] }c.default=t,l&sl.set(C,c) }) (c(dlD]));
new WeakMap, 1=new

create ({container: (f
rderWidth: 3, borderRadius
dliumn (g, e, .d) [Objec

:20, fontWeight: "bold',alignItes -
:10,overlayColor: "white' ,alignSelf: "center'}})},397,[128,1,3,
.defineProperty (e, " eaM la", {value: !0}) ,e.default=vaid 0;var

n=r{d[0]),o=n.NativeModules. JailMonk ok&donsole.wa JailMonkey is not available, check your native dependencies have linked
correctly and ensure your app has been re) "}:;var t={jailBrokenMessage:function() {return

o.jailBrokenMessage| | ™" I,IisJaLlBroken: function() {return false]}|hockDetected: function() {return

a.hookDetected| | '1) , canMoCELOCAT10N: TUNCL1ION () [LECULN O.Canl kLocationl | '1), trustFall: function() (return

o.1sJailBroken| |o.canMockLocationl | !1}, isOnExternalStorage: function() {return o.isOnExternalStoragel|!1},isDebuggedMode: function () (return

o, isDebuggedMode () §, isDevelopmentSettingsMode :: function () {returnandroid™ !==n.Platform.05?Promise . resolve (! 1) io.isDevelopmentSettingsMode () |,
AdbEnabled: function () {return o.AdbEnabled]||!1} I,c.dcfaL.lt t).398, [1]);

__d{functi {e,t,s,a,r,i, o) (r.exportsst(c[0]). Lelnssc—t(l pacla;e-l aszet: !0, httpServerLlocation:"/fassets/img",width:640, height:640, scale

tyle: {width: 390, height: 370, borderColor:™
L176]);

"937006£31%a0ddEb3£2]11ac5e5283a%0", n “I"'}]] 380, [400]);
{g.r.i,a,med(* [154]J,
t,a.d, i, LJN g.ar_ku.;u_l et:!0,httpServer 5/ img”, width: 640, height: 364, scale

1: [1], has £697c15dd1328 £ % -flS] dibe 7 m A J\f"IJ],”F‘l 400]3
d{function(o, t,e,d,a,n,) (a.expor [name: "rootdet",displayName cotdet™}}, (1
r(52): I
r{0)

f/4% sourceMappingURL=index.android.bundle.map

We are modifying the function such that it returns a “false” boolean value to the “isJail-
Broken” function.

A
A

Chapter 7 <68/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

5. Go to the “META-INF" folder and delete the following files
1. CERT.RSA
2. CERT.SF
3. MANIFEST.SF

6. Change file extension back to “.APK"” and run the following command to generate the

keystore file,
keytool -genkey -v -keystore <keyStoreName>.keystore -alias <keySto-

reAlias> -keyalg RSA -keysize 2048 -validity 10000

7. Now sign the APK with the newly generated keystore. Run the following command:
jarsigner -verbose -sigalg SHAlwithRSA -digestalg SHAl -keystore
<my-keyname>.keystore

<VulnerableApp.APK> <alias_name>

8. Install the application into the device with

adb install VulnerableApp.APK

9. Open the application and you will see root detection has been bypassed.

naroid
12:39 & @

Root Detection

Root Status:

Device is NOT rooted

A
A

Chapter 7 <69/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

The example shown above is not limited to the shown test case. The implementation of
the “isJailBroken” function may vary. It is important to understand the function implemen-

tation to modify as per our requirement.

Bonus:

For reference, below is the actual project code snippet vs webpack compiled code.

Actual Project Code Snippet

(JailMonkey.isJailBroken){

& Payatu

Webpack Compiled Code Snippet

n.default.isJailBroken 7

isJailBroken:

Chapter

7

o.isJailBroken || !1

<70/92>

Chapter 8

SSL Certificate
Pinning Bypass

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

What is SSL certificate pinning?

You might already be aware of SSL certificate pinning in the Android application. SSL
certificate pinning in short is a process of associating a host with its expected X509 cer-
tificate or public key.

In certificate pinning, the application is configured to accept only the certificate of a spe-
cific domain instead of any trusted CA root certificate in the device (such as PortSwigger
CA certificate).

SSL Pinning

Trusted root
. CA list
@

®

Legitimate Certificate

Bad Certificate

SSL pinning flow diagram

source: https://www.indusface.com/learning/what-is-ssl-pinning-a-quick-walk-through/

Bypassing certificate pinning with Frida

Frida by codeshare is the go-to tool to bypass the certificate pinning in runtime. The fa-
mous “Universal Android SSL Pinning bypass script” also works great with React Native
applications. You can refer to the article below to perform a pinning bypass like a normal
Android application:

n

Hail Frida!! The Universal SSL pinning bypass for Android applications”

But.

What if due to any circumstances, we are not able to dynamically hook the application and
bypass certificate pinning or we want to permanently bypass the certificate pinning?

Chapter 8 <72/92>

https://www.indusface.com/learning/what-is-ssl-pinning-a-quick-walk-through/
https://codeshare.frida.re/@pcipolloni/universal-android-ssl-pinning-bypass-with-frida/
https://infosecwriteups.com/hail-frida-the-universal-ssl-pinning-bypass-for-android-e9e1d733d29

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

Manually Patching React Native application to bypass cer-
tificate pinning

The most used technique to implement certificate pinning in React Native applications

is by utilizing the “react-native-ssl-pinning” node module. The major disadvantage (per-
haps an advantage for us (%5) of certificate pinning in React Native applications is that the
pinned certificate can be found in the “/assets” folder of the application. Hence an attack-
er having control over this certificate completely demolishes the certificate pinning im-
plementation.

Steps:
1. Change the extension of the .apk file to .zip and open the zip file in any compression tool
such as WinRAR or 7zip.

2. Go to the “/assets” folder and note the name of .cer certificates.

[EE VuinerableApp.apkzip (evaluation copy)
File Commands Tools Favorites Options Help

< =) ikl

B @ E@0me \® @ 8 =
— LLL} A AN - v I

Add ExtractTo Test View Delete Find Wizard Info VirusScan Comment — SFX

‘N ﬂ VulnerableApp.apk.zip\assets - ZIP archive, unpacked size 79,906,035 bytes

Name Size Packed Type Modified CRC32

- File folder
&/ index.android.bundle 778425 199,085 BUNDLE File 01-01-1981 01... 712F2632
B9 reqres.cer 1,024 Security Certificate 01-01-1981 01.. 9297EAA3

3. Delete all “.cer” certificates from the “/assets” folder.

4. Now configure BurpSuite with an Android device and generate a .der certificate from
BurpSuite.

fuip Frogect Intruder Repeater Window Help

Target Proxy Intruder Repeater Sequencer Decoder Comparer Logger Extender Frojectoptions Useroptions Leam
Intercept HTTP history WebSockets histery Options
@) Pr
g Burp Proxy uses Esteners to receive incoming HTTP requests from o s - o - - SR oy Erves
o CA Certificate - =}

Add Running et I A

E) You can export your certificate and key fo
Edit 127.0.0.1:8080 o nstalat
*8899
Remove

Each installation of Burp generates its own CA certificate that Prox Bruse in ather tools or another installation of Bup

Import / export CA certificate Regenerate CA certificate Cortificate and private key in PKCS#12 keystore

)
)

rtificate and private key in DER format
55,‘1 Use these settings to control which requests are stalled for viewing astificati and privole kiy from PECS#1Z kystore
L=
nercept requests based on the following rules
Add Enabled Operator
Edit
or
Remov
emove o
Uy And
A Automatically fix missing or superfluous new lines ot end of reguest

Chapter 8 <73/92>

https://www.npmjs.com/package/react-native-ssl-pinning

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

5. Change the certificate extension from “.cer” to “.der” and rename the newly generated
“.cer” certificate from BurpSuite with the name copied in step 2.

Name

tE VulnerableApp.apk.zip

B regres.cer

i} loki.keystore

6. Paste these new certificates in the “/assets” folder.

E VulnerableApp.apk.zip (evaluation copy)

File Commands Tools Favorites Options Help

"‘gr-j? 1“179\ \®6 =

Add ExtractTo Test View Delete Find Wizard

Info VirusScan Commd

1 | |88 vulnerableApp.apkzip\assets } ZIP archive, unpacked size 79,983,863 bytes

N

Name Size Packed Type

L’ index.android.bundle

778,425 199,085 BUNDLH
 regres.cer | 940 707 Security

7. Delete files in META-INF and sign APK as instructed earlier.

Chapter 8 <74/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

8. Install the application and intercept the encrypted HTTP traffic.

[EX Gup Froject Intiuder Repeater Window Hep
Dashboard Target Proxy Intruader Repeater Sequencer Decoder Comparer Logger Extender Project options User options Learr Googhe Pisel 2 ¥1-Fresh (14402880, 56

Intercept HTTP history ‘WebSockets history Options W

Filter: Hiding 55, image and general binary content

v Host Method URL Params Edited Status Length MIME type Extension Title

86 hitpsyreqres.in GET fapi.rusenl 200 1660 JSON Eetched Data:

83 hitpsy/connectivitycheck.gst.. GET Tgenerate_204 204 298

hittps:/jconnectivitycheck.gst.. GET fgenerate_204 204 298 “{\"page\"1.\"per.
12\"total_|
Nemaily

N first_name\"\"George\"\"last
\'Bluth\"\"avatar\":\"https://regres.in
Jimg/faces/1-image.jpg\"}.{\"Id\"2

@
2

Raw Hex E L Raw Hex
GET fapifusers HTTP/2 HTTP/2 2088 OK

Date: Tue, 27 Sep 2022 17:08:56 GMT
T pzip, deflate Content-Type: application/json; charset=utf-8 ~Nemail\"\janet.weaver@reqres.in\
: okhttp/4.9.2 i X-Powered-By: Express Mfirst_name\"\"Janet\" \"last_name\"

Access-Control-Allow-Origin: *

Etag: W/"3eds2RLKvrSwTgaV06aHISCkYoF NUDS"™
via: 1.1 vegur
Cache-Control: max-ages14468

\"Weaver\"\"avatar\"\"https://reqres
in/img/faces/2-image.jpg\"}{\'id\"3
‘email\"\"emma.wong@reqres.in\”

Cf-Cache-Status: HIT 4
Age: 1455 Mirst_name\"\"Emma\",\ last_name'\,
Report-To: \"Wong\",\"avatar\"\"https://reqres

{“endpoints™:[{"wrl® :"https:\/\/a.nel. cloudflare. com\/report/vaRs infir aces/3-imaae.ipa\} {\"id\"
vEKQrk6EABTIT52RVING] 1BqMt qe4uQ In)T 2GATKUKME N v 77t 14T IF bty bbbk ‘j‘ftl “: :]‘]I[-]_LJI')-L]‘ }""\ '\dr A
9afnadl1TgghOnE 7KW IVPX2n YV oo yWHmgHVWHFK TKCy FeOUCF gX30%30")], "af ~email\"Veve.holt@reqgres.in\’\"first
p=:Tef-nel”, “nax_age" : 604808} name\"\"Eve\" \last_name\"\"Holt\"
i frac =10, “report_to” f-nel”, "max_age” : 604800} \\Ia‘u'ﬂla['\ \"hitps: 'rcqvp il1."i|11g-'fa{tr‘5
Vary: Accept-Encoding il Ay S o
server: cloudflare /4-image.jpgh 1{\"id\":5,\"email\":
CF-Ray: 7515dBlaeadf9abF-NAG \'eharles.morris@reqres.in\
name\"\"Charle |
\Morris\ \avatar\ " \"https.//reqres
in/img/faces/S-image.jpg\"L{\"id\".6
Nemail\\"tracey.ramos@reqres
first_name\"\"Tracey\"\"last_name\'
VRamos\" \"avatar\"; ffreqres.in
fimg/faces/6-image.jpg\"}].\'support\™:
{\url\":\"https.//reqres.in/#support

data”: [{"id":1,
last_name!

G)ios € > omuches_ (O) B € >

Chapter 8 <75/92>

Chapter 9

Identity Manually
Installed npm

Packages

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

React Native provides a set of built-in Core Components and APIs ready to use in the app.
We are not limited to these built-in packages, as React Native has a community of thou-
sands of developers. If the core packages don't have what we are looking for, we may be
able to find and install a library from the community to add the functionality to our app.

React Native packages are typically installed from the npm registry using a Node.js pack-
age manager such as npm CLI or Yarn Classic.

Application may use some of the packages which are either outdated or contains critical
vulnerabilities. Either way, we can identify these packages to find any known vulnera-
bilities/loopholes in them which can help in our exploitation journey of the React Native
applications. Below are the two types of npm packages we can find in the React Native
application.

Types of npm packages in React Native application:
1. Pre-installed:

® Pre-installed npm packages are those packages that get installed during the project
creation of a new React Native application. These packages are core packages that pro-
vide basic features for any React Native application.

® Examples of pre-installed packages are “StyleSheet, AsyncStorage, FlatList, TextInput”
etc.

® Usually, these pre-installed packages can be found at the beginning of the “index.an-

droid.bundle” file. We can search for the following exact keyword to find the list of pre-in-
stalled npm packages:

Chapter 9 <77/92>

https://reactnative.dev/docs/components-and-apis
https://www.npmjs.com/
https://www.npmjs.com/
https://docs.npmjs.com/cli/npm
https://classic.yarnpkg.com/en/

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

® The very first instance of the above-mentioned keyword contains the list of pre-in-
stalled npm packages.

ilicyInfo()

n c{d[0]).default

}.

get Activitylndicator() {
return

merged with DatePickerAnt
ve-community/datetimepicl
epicker™), ri{d[4])

get FlatList() {
return c{d[€])

-'.mr Image() |
return r{d[7])

S maarch et - (27 hits
Search "m.exports = {* (27 hits in 1 file of 1 searched)
1 T \Rsact Mative Devel) di £yt androidiappibuild\cutputsiapk\release)\ raviapp-releasetassets) index android.bundie {27 hits)

® We can scroll down to see the entire list of pre-installed npm modules in the “m.ex-
port” array.

Chapter 9 <78/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

& Payatu

Chapter

9

m.export

1.
get

get

get

5 = {
AccessibilityInfo () {
return r(d[0]).default
ActivityIndicator() {
return r(d[1])

Button() |
return r(d[2])

DatePickerIOS() |

return r(d[3]) ('DatePickerI0OS-merged', "DatePickerIOS has been merged with
DatePickerAndroid and will be remowved in a future release. It can now be installed and
imported from '@react-native-community/datetimepicker' instead of 'react-native'. See
https://github.com/react-native-datetimepicker/datetimepicker™), r(d[4])

DrawerLayoutAndroid() {
return r(d(5])

FlatList () {
return r(d[&])

Image() {(
return r{d([7])

ImageBackground() {
return r{d[8])

InputAccessoryView() {
return r{d[9])

KeyboardAvoidingView() |
return r(d(10]).default

MaskedViewIOS() {

return r(d[3]) ('maskedviewics-moved', "MaskedViewIOS has been extracted from
react-native core and will be removed in a future release. It can now be installed and
imported from '@react-native-masked-view/masked-view' instead of 'react-native'. See
https://github.com/react-native-masked-view/masked-view"), r{d[11])

Modal() {
return r(d[12])

Pressable() {
return r(d[13)).default

ProgressBarAndroid() {

return r{d[3]) ('progress-bar-android-moved', "ProgressBarAndroid has been extracted
from react-native core and will be removed in a future release. It can now be
installed and imported from '@react-native-community/progress-bar-android' instead of
'react-native'. See
https://github.com/react-native-progress-view/progress-bar-android"), c{d[14])

ProgressvViewIOS() {

return r{d[3]) ('progress-view-ios-moved', "ProgressvViewIOS has been extracted from
react-native core and will be removed in a future release. It can now be installed and
imported from '@react-native-community/progress-view' instead of 'react-native'. See
https://github.com/react-native-progress—view/progress-view"), r(d[15])

RefreshControl () (
return r({d[16])

SafeAreaView() {
return r(d[17]) .default

ScrollView()
return r(d[18])

SectionList() {

return r{d[19]) .default
SegmentedControlIos() {

return r(d[3]) ('segmented-control-ios-moved', "SegmentedControlIOS has been extracted
from react-native core and will be removed in a future release. It can now be
installed and imported from '@react-native-segmented-control/segmented-control’
instead of 'react-native'. See
https://github.com/react-native-segqmented-control/seqmented-control™), r{d[20])

Slider() {

return r(d[3)) ('slider-moved', "Slider has been extracted from react-native core and
will be removed in a future release. It can now be installed and imported from
'RBreact-native-community/slider' instead of 'react-native'. See
https://github.com/callstack/react-native-slider™), r(d[21])

StatusBar() {
return r({d[22])

<79/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

2. Manually installed:

® Contrary to the pre-installed npm packages, manually installed npm packages are
installed manually during the development phase of the React Native application. This
means these packages do not come pre-installed when React Native application creation
Is initialized.

® These packages are created and released by awesome community members of React
Native and can be found on "npmjs.com”

® As mentioned above, manually installed packages get installed during the development
phase of a product, or the application team may install a single or number of packages as
per their convenience.

For example,

“Stark Technologies” want to implement root detection in its React Native appli
cation. Thus, it may use the “jail-monkey” package.

“Pym Technologies” want to implement SSL pinning in its React Native applica
tion. Thus, it may use the “react-native-ssl-pinning” package.

On another side, “S.H.I.E.L.D. Technologies” want to implement both, root detection
& SSL pinning. Thus, it may use both the “jail-monkey” and “react-native-ssl-pin
ning” npm packages.

e We can find these packages in “index.android.bundle” file with the following keyword:

NativeModules

Find A8 i A8 Qpaned

,,,,,,

Chapter 9 <80/92>

https://www.npmjs.com/
https://github.com/GantMan/jail-monkey
https://www.npmjs.com/package/react-native-ssl-pinning

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

Here we can see that we have manually installed and used 3 packages:
- JailMonkey which is “jail-monkey”
- RNSslPinning which is “react-native-ssl-pinning”
- RNCWebView which is “react-native-webview”

Searching for any known CVEs or vulnerabilities on
found packages:

1. Once we identify a list of packages, we can search for more information on these pack-
ages with following example keyword:

//NativeModules.<moduleName>

NativeModules.Ja1ilMonkey

NativeModules.JailMonkey; X ,!,, Q,

Q All {) Shopping [*] Videos [Z) News &) Images ! More Tools

About 82 results (0.27 seconds)

https://github.com > GantMan > jail-monkey)4

GantMan/jail-monkey: A React Native library for ... - GitHub
JailMonkey allows you to: Identify if a phone has been jail-broken or rooted for i0OS/Android.
Detect mocked locations for phones set in "developer mode” ..

https.//www.npmjs.com » package jail-monkey)7

jail-monkey - npm
03-Jun-2022 — A React Native module for identifying jail-broken, rooted, or mock locations on
I0S and Android. Latest version: 2.7.0, last published: 4

Missing Must include: NativeModules.

https://stackoverflow.com » questions » check-if-device... {13 ¢

Check if device is jailbroken/rooted using Jail Monkey in ...
28-Jan-2020 — JailMonkey uses Native Modules and thus cannot run in an Expo managed
app. You need to eject it to ExpoKit for JailMonkey to work

3 answers - Top answer: Solved but doing manually the linking.

Chapter 9 <81/92>

C@) Mastering React Native Application Pentesting: A Practical Guide ") Payatu

2. Unfortunately, there is no way to identify the version details of the packages used in
vulnerable React Native applications. However, we can search for any known CVEs or vul-
nerabilities, or open issues for npm package we found in the application

//<package name> cve

jail-monkey cve

Go gle jail-monkey cve X § Q
Q Al (] Images [Videos [E News < Shopping t More Tools
Al 14,000 rest (0.24 secor

https://snyk.io » _.. » npm » jail-monkey)28

jail-monkey vulnerabilities - Snyk

version published direct vulnerabilities
270 2 Jun, 2022 0.C.OHO.MOL
260 22 Jul, 2021 0.C.0OHOMOL
250 23 Jun, 2021 0.C.O.H.0O.M.O.L
View 22 more rows

https://github.com » GantMan » jail-monkey ()4

GantMan/jail-monkey: A React Native library for identifying if a ...
JailMonkey allows you to: Identify if a phone has been jail-broken or rooted for iI0S/Android
Detect mocked locations for phones set in "developer mode”

Missing: eve | Must include: cve

https://github.com » GantMan » jail-monkey » issues) 4

Issues - GantMan/jail-monkey - GitHub
A React Native library for identifying if a phone is rooted or mocking locations - Issues
GanthMan/jail-monkey

Chapter 9 <82/92>

Chapter 10

React Native npm

Package CVEs
Walkthrough

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

React Native applications are built using multiple npm modules. Some of them are offi-
cially released and maintained by Facebook, however some of them are created by com-
munity members. We will review some of the zero-day vulnerabilities identified in npm
packages specifically used to build some components of React Native applications.

1. CVE-2020-6506 Android WebView Universal Cross-
site Scripting

® A universal XSS (cross-site scripting) vulnerability has been identified in the Android
WebView system component. “react-native-webview" npm package which is used for
webview component in React Native applications is also affected as it utilizes the same
component for WebView implementation. This component allows cross-origin

iframes to execute arbitrary JavaScript.

® This UXSS vulnerability affects React Native applications which use a “react-na-
tive-webview” npm package that allows navigation to arbitrary URLs and when that app
runs on systems with an Android WebView version prior to 83.0.4103.106.

Affected npm package: react-native-webview

Affected version: 10.0.0 or below

Description:

® |In the WebView component in React Native applications, Feys{i[sJsleI g« (V& & FoX ¥R

Is used to handle new windows with javascript: URLs in the same way as new win-
dows with https:// URLs, which is to navigate the top document to the provided URL. This
leads to JavaScript being executed in the top document context.

® To exploit this issue, an iframe can callKTalale[ITINeI I-T N @RV N el g] o1 R0 I gl

Successful exploitation of this attack requires a user interaction such as tap or click or
keypress because WebView requires interaction to open a new window.

A
A

Chapter 10 <84/92>

https://github.com/advisories/GHSA-36j3-xxf7-4pqg
https://www.npmjs.com/package/react-native-webview
https://www.npmjs.com/package/react-native-webview

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Demo:

- Vulnerable: - Safe:

PoC Android WebView App

VULNERABLE 1 VULNERABLE 2

Android Chromium WebView
XSS via window.open()

Parent page on https://aogarantiza.com

iframe on https://diff-
origin.aogarantiza.com

Tap/click this iframe, which will call window.open()
with javascript: URL which executes in parent page
The page at "https://aogarantiza.com” context. (Observe injected HTML in parent page, and
says: potentially an alert() dialog)

XSS in doc.domain: aogarantiza.com, Other events which result in user activations
win.origin: https://aogarantiza.com consumable by window.open() also work, such as
focus events.

The alert() test is not reliable because if
WebChromecClient.onJsAlert() is not defined or
returns false, no alert dialog box will be shown
despite PoC working. Other actions are more
reliable, such as injecting HTML into parent page.

Images Reference: https://alesandroortiz.com/articles/uxss-Android-webview-cve-2020-6506/#sidenote-1

Mitigation:

® Ensure users update their Android WebView system component via the Google Play
Store to 83.0.4103.106 or higher to avoid this UXSS. ‘react-native-webview’ is working on a
mitigation but it could take some time.

Read more:

® https://alesandroortiz.com/articles/uxss-Android-webview-cve-2020-6506/

® https://github.com/advisories/GHSA-36j3-xxf7-4pqg

Chapter 10 <85/92>

https://alesandroortiz.com/articles/uxss-Android-webview-cve-2020-6506/#sidenote-1
https://alesandroortiz.com/articles/uxss-android-webview-cve-2020-6506/
https://github.com/advisories/GHSA-36j3-xxf7-4pqg

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

2. CVE-2020-7696 Information Exposure Affecting
react-native-fast-image

® ‘react-native-fast-image” npm package is an image processing component which im-
proves the image processing ability of an React Native application. It reduces flickering,
cache misses, improves performance loading from cache and performance in general.

® The affected version of this package has been vulnerable to information exposure while
rendering the image from uri. When an image withEJeIiIgel=EX R {11 o IR o 1-F-To [-T ol

{ host: "[somehost.com](<http://somehost.com/>)", authorization:
AL B IS loaded, all other subsequent images will use same headers. Thus, authori-
zation token, cookies or any sort of headers will be leaked to the servers of subsequent
Images.

Affected npm package: react-native-fast-image
Affected version: 8.2.2 or below
Demo:

- React Native Code:

in:18}
zin:10}

image source uri #1

Authorization header for
image sourc uri #1

image source uri #2

A
A

Chapter 10 <86/92>

https://www.cve.org/CVERecord?id=CVE-2020-7696
https://security.snyk.io/package/npm/react-native-fast-image
https://security.snyk.io/package/npm/react-native-fast-image

C@) Mastering React Native Application Pentesting: A Practical Guide

- Call-back listener uri:

Mitigation:
@ Upgrade “react-native-fast-image" to version 8.3.0 or higher.
Reference:

® https://www.cve.org/CVERecord?id=CVE-2020-7696

® https://security.snyk.io/vuln/SNYK-JS-REACTNATIVEFASTIMAGE-572228

A
A

Chapter 10 <87/92>

https://www.cve.org/CVERecord?id=CVE-2020-7696
https://security.snyk.io/vuln/SNYK-JS-REACTNATIVEFASTIMAGE-572228

C@) Mastering React Native Application Pentesting: A Practical Guide () Payatu

Final Thoughts

<88/92>

C@) Mastering React Native Application Pentesting: A Practical Guide

In the past few years, we have seen a huge expansion of new technologies in mobile
application development. While it is hard to keep up with everything going at a “mach-10"
speed, it is important to figure out the differences between the technologies to hit hard
at the weakest link within them. React Native framework is evolving with full thrust due
to Facebook and the support of a strong community. So, it becomes crucial to identify the
pain points of this framework.

We as pentesters are always curious about new technologies and it's no different in the
case of React Native. The technology is still new and needs more research, trial & error,
to uncover the nastiest loopholes for the purpose of exploiting them for fun and profit.

Also, we have released two React Native CTF applications which you can find below:

1. VulnerableRN.apk (Without Hermes)
2. RNHermesCTF.apk (With Hermes)

Do check these out!

Finally, thank you for taking the time to read this ebook. | hope you had fun trying out
these test cases on our React Native CTF application. Do let us know if you have any feed-
back or comments. Until next time, Adios!!

EBOOK AUTHOR
THANKING ME
FOR READING THE

= ENTIRE BOOK

’ :I.
__CAMEHERE

" FOR THEMEMES

A
A

Final Thoughts <89/92>

https://github.com/banditVedant/React-Native-CTF/releases/tag/reactnative
https://github.com/banditVedant/React-Native-CTF/releases/tag/reactnative

@ Payatu

About Payatu

Payatu is a Research-powered cybersecurity services and training company specialized
in 1oT, Embedded Welb, Mobile, Cloud, & Infrastructure security assessments with a prov-
en track record of securing software, hardware and infrastructure for customers across

20+ countries.

'I:‘O' Mobile Security Testing ¢
v
LA Detect complex vulnerabilities & security loopholes. Guard your mobile

application and user’s data against cyberattacks, by having Payatu test

the security of your mobile application.

loT Security Testing #

loT product security assessréent is a complete security audit of embed-
ded systems, network services, applications and firmware. Payatu uses
its expertise in this domain to detect complex vulnerabilities & security

loopholes to guard your |oT products against cyberattacks.

Cloud Security Assessment ¢

As long as cloud servers live on, the need to protect them will not di-
minish. Both cloud providers and users have a shared. As long as cloud
servers live on, the need to protect them will not diminish.

Both cloud providers and users have a shared responsibility to secure
the information stored in their cloud Payatu's expertise in cloud protec-
tion helps you with the same. Its layered security review enables you to
mitigate this by building scalable and secure applications & identifying

potential vulnerabilities in your cloud environment.

https://payatu.com/mobile-application-security-testing/
https://payatu.com/iot-security-testing/
https://payatu.com/cloud-security-assessment/
https://payatu.com/iot-security-testing/
https://payatu.com/web-security-testing/
https://payatu.com/cloud-security-assessment/
https://payatu.com/mobile-application-security-testing/

<8}

©®

(} Payatu

Web Security Testing ¢

Internet attackers are everywhere. Sometimes they are evident. Many
times, they are undetectable. Their motive is to attack web applications
every day, stealing personal information and user data. With Payatu, you
can spot complex vulnerabilities that are easy to miss and guard your

website and user’'s data against cyberattacks.

DevSecOps Consulting ¢

DevSecOps is DevOps done the right way. With security compromises
and data breaches happening left, right & center, making security an
integral part of the development workflow is more important than ever.
With Payatu, you get an insight to security measures that can be taken
in integration with the CI/CD pipeline to increase the visibility of security

threats.

Code Review ¢

Payatu’'s Secure Code Review includes inspecting, scanning and eval-
uating source code for defects and weaknesses. It includes the best
secure coding practices that apply security consideration and defend

the software from attacks.

Red Team Assessment ¢

Red Team Assessment is a goal-directed, multidimensional & malicious
threat emulation. Payatu uses offensive tactics, techniques, and proce-
dures to access an organization’s crown jewels and test its readiness to

detect and withstand a targeted attack.

https://payatu.com/web-security-testing/
https://payatu.com/devsecops-consulting/
https://payatu.com/code-review-service/
https://payatu.com/red-team-assessment/
https://payatu.com/web-security-testing/
https://payatu.com/devsecops-consulting/
https://payatu.com/code-review-service/
https://payatu.com/red-team-assessment/

—_—

B

Product Security ¢
Save time while still delivering a secure end-product with Payatu. Make
sure that each component maintains a uniform level of security so that

all the components “fit” together in your mega-product.

Critical Infrastructure Assessment ¢

There are various security threats focusing on Critical Infrastructures like
Oil and Gas, Chemical Plants, Pharmaceuticals, Electrical Grids, Manu-
facturing Plants, Transportation systems etc. and can significantly im-
pact your production operations. With Payatu's OT security expertise you
can get a thorough ICS Maturity, Risk and Compliance Assessment done

to protect your critical infrastructure.

CTl ¢

The area of expertise in the wide arena of cybersecurity that is focused
on collecting and analyzing the existing and potential threats is known
as Cyber Threat Intelligence or CTI. Clients can benefit from Payatu's CTI
by getting — social media monitoring, repository monitoring, darkwelb
nmonitoring, mobile app monitoring, domain monitoring, and document

sharing platform monitoring done for their brand.

More Services Offered More Products Offered
. Al/ML Security Audit & + EXPLloT &
+ Trainings & « CloudFuzz &

Payatu Security Consulting Pvt. Ltd.

5 www.payatu.com
o Payatu = info@payatu.com

. +9120 41207726

ORORORONO)

https://payatu.com/product-security-assessment/
https://payatu.com/cloud-security-assessment/
https://payatu.com/reports/
https://payatu.com/ai-ml-security-audit/
https://payatu.com/
https://expliot.io/
https://cloudfuzz.io/
http://www.payatu.com/
https://www.youtube.com/@payatu5031
mailto:info%40payatu.com%0D?subject=
https://www.youtube.com/@payatu5031
https://www.linkedin.com/company/payatu/mycompany/
https://www.facebook.com/payatutechnologies
https://twitter.com/payatulabs
https://www.instagram.com/payatubandit/
https://payatu.com/cloud-security-assessment/
https://payatu.com/reports/
https://payatu.com/product-security-assessment/
https://payatu.com/ai-ml-security-audit/
https://expliot.io/
https://cloudfuzz.io/
https://payatu.com/

