[oT Security — Part 4 (Bluetooth Low Energy — 101)

“ Arun-Magesh
22/10/2018

o S,

Bluetooth Low Energy 101

If you haven't read through Part 1 to Part 3 of our IoT Security Blog series I would urge you to go
through them first unless you are already familiar with the basics of IoT. Link to the previous

blog — loT security — Part 3

Bluetooth has been a buzz-word as people wanted all their devices to be smart and which
basically implies that you get to control things across the devices and not needing to carry wire
around. Bluetooth has been in the market for more than a decade. If you're a millennial, you
would have used those classic fancy Nokia phone which has Bluetooth in it. Bluetooth was
invented by Ericsson and other vendors have started using Bluetooth. Soon after that, all the
major vendors created a consortium called as Bluetooth Special Interest Group — SIG which

governs how the standard should be and the interoperability between different versions.

We are not going to talk about Bluetooth. Bluetooth by itself is a massive stack and their
specification is around 2000+ pages. In this blog, I will be covering only the Bluetooth Low

Energy more famously known as BLE.

With the advent of connecting all the things to the internet, there comes the problem of power
and resource. As I mentioned early, Bluetooth is a huge stack. Implementing it in an end device
like a fitness band would take more power and resource. So in the Bluetooth 4.0 standard, they
introduced something called Low energy which is specially targeted for IoT and smart devices

which runs on memory and power constrained devices.

3 Bluetooth

Bluetooth SIG started selling the standard as Bluetooth Smart. Which has two components,

Bluetooth smart devices are end devices which have only the Bluetooth Low Energy component
and Bluetooth smart Ready are the device which is capable of doing both the Bluetooth LE and
the EDR-Bluetooth classic component which could be your central device, ie, mobile phone or

laptop.

Now let's look into the technical details of the Bluetooth specification

Technical Specification

Classic Bluetooth technology

Bluetooth low energy technology

Radiec Frequency

24GHz

2.4GHz

Distance /Range 10m 10m

Over the air data rate 1-3 Mbit/s 1 Mbit/s
Application throughput 0.7-2.1 Mbit/s 0.2 Mbit/s
Active slaves 7-16,777,184 Unlimited

Security 64 /128bit and application layer 1Z8bit AES and application layer
user defined user defined
Robustness Adaptive fast frequency hopping, Adaptive fast frequency hopping

FEC, fast ACK

Latency (from a non- Typically 100 ms 6 ms
connected state]

Total time to send data 100 ms <6 ms
Government Regulation Worldwide Worldwide
Certification Body Bluetooth SIG Bluetooth 51G
Voice capable Yes No

Network topelogy Scatternet Star-bus
Power consumption 1 as the reference 0.01 to 0.5 {depending on use case)
Peak current consumption | =30 ma <15 mA
Service discovery Yes Yes

Profile concept Yes Yes

Primary use cases

Mobile phones, gaming, headsets,

stereo audio streaming,
automotive, PCs etc.

Mobile phones, gaming, PCs,
watches, sports and fitness;,
healthcare, security & proximity,
automotive, home electronics,
automation, Industrial, etc.

Source:
https:/archive.eetindia.co.in/www.eetindia.co.in/STATIC/ARTICLE_IMAGES/201312/EEIOL_2013DEC13_F

The table itself will give you a better insight into the specification, range and bandwidth has

been reduced to withstand the low power and low resource.
As I mentioned earlier, LE has two different types of devices.

Bluetooth Smart Ready — Which are the central device which is battery powered and high

resource which is capable of running all the Bluetooth protocols. They are your laptops and a

mobile phone.

€3 Bluetooth

SMART READY

Bluetooth Smart — They are your end devices like fitness tracker or baggage tracker or a smart

dildo. They don't have to run an entire stack and they need to conserve power and resource.
They run only the Bluetooth LE server. They are the peripheral device that the central device

can connect to.

&3 Bluetooth

SMART

Bluetooth and LE stack details are out of the scope of this document.

But the two important components we will focus on are GAT and GAPP which are responsible

for the operation of the BLE service.

€3 Bluetooth’ €3 Bluetooth €3 Bluetooth

SMART READY SMART
(classic or BR/EDR) (dual mode or BR/EDR/LE) (single mode or BLE)
SPP SPP GAP GATT GAP GATT
RFCOMM RFCOMM SMP ATT SMP AT
L2CAP L2CAP L2CAP
Link Manager Link Manager Link Layer Link Layer
BR/EDR PHY -)) ((- BR/EDR <+ LE PHY -)) ((- LE PHY

Generic Access Profile (GAP)

GAP defines how your communication and connection to the central and peripheral should

work.

ACVERTISING INTERVAL ADVERTISSNG INTERVAL ADVERTISIMNG INTERVAL ADWERTISING S TERVAL

Pid i > Ll
ADVERTISING ADVERTISING scam REsPonse| | AvesmsinG ADVERTISING
[DATA DATA DWATA DATA [BATH,

R 2 S A

SLAN RESPLINSE
REQLIEST

Peripheral

Central

Source:https://learn.adafruit.comiintroduction-to-blu emmh-lm—energy.fgapl

Generic Attribute (GATT)

GATT is like a server which manages how your data needs to be treated.

Your Bluetooth LE devices work as a server-client principle. Here your end device/peripheral
device acts as the server which runs the GATT server and your central device, acts as the client.

So your end app or the tool connects to the GATT server and requests data from the device.

Inside your GATT server. There are three components.

1. Profile — Which is defined by the Bluetooth SIG, it could be based on the type of the device, be
it a blood pressure device or temperature sensor or any most commonly used device which
has an advantage of interoperability.

2. Services — Each device has multiple parameters inside it. Let's say a device could have a
name, firmware version, OTA functionality, device operation. They are grouped into their
specific datasets called as service.

3. Characteristics — inside your service is where your data is placed. It could be a 16 bit

Bluetooth SIG derived characteristic or a vendor-specific 128-bit characteristic.

In short, service is like a folder and characteristics are the files which holds the data.

Profile
Service Service
Include | Include
s : E -
L] (1]
L] (4]
Include E include
e 1 L
Characternistic Charactenistic
Properties Properties
Value i Value
= —— —— : e 2
Descriptor : See i Descriptor
e -
(=] 4]
(4]
Descriptor : Descriptor
L] (4]
[] 4]
L] {4}
Charactenstic Charactenstic
Properies Froperties
. -
Value i Value
Descriptor Descriptor
T [£] 4]
4] 4]
4] 4]
ir Descriptor Descriptor

Now that we understood the basics of what is Bluetooth LE and how it functions. Let's go into

some tools and methods on how to access the BLE devices.

If you are using windows, I would seriously suggest you use Ubuntu as it comes with all the
necessary tools to access ble devices and get those cheap Bluetooth 4.0 dongles from Amazon.

(some laptops don't come with it.)

Connecting your Bluetooth dongle:

1. Connect the Bluetooth USB Dongle to the free USB port of your laptop. (No need to install any
driver from your host machine).

2. Once Connected, open your terminal and type “sudo hciconfig” You should be able to see this
window which gives you the mac address(The USB dongle) and it should say UP and
RUNNING.

3. If you encounter any issue restart the Bluetooth interface by “sudo hciconfig hcio reset” —

This will be handy a lot of time.

buzz@expliotable:~$ sudo hciconfig
[sudo] password for buzz:
hci@: Type: BR/EDR Bus: USB
BD Address: 00:1A:7D:DA:71:13 ACL MTU: 310:10 SCO MTU: 64:8
UP RUNNING
RX bytes:628 acl:0 sco:0 events:39 errors:0
TX bytes:1681 acl:0 sco:0 commands:39 errors:0

S —————

Scanning for Bluetooth devices

1. Once you have successfully connected your Bluetooth dongle to your machine

2. You can now scan for all the ble devices around you using “sudo hcitool lescan”

buzz@expliotable:~$ sudo hcitool lescan
LE S5can ...

OF :5E:0F:43:0D:22 (unknown)
2D:9A:AE:48:01:CA (unknown)
00:82:21:91:1F:A1 (unknown)
EF:CE:06:17:1A:EC Y5-1AEC

—

3. You will see a list of devices with their name and MAC address.
4. Figure out the mac of your device by turning it off and on and finding the difference.
5. Now to get more information about the device. Do a “sudo hcitool leinfo —-random <mac>" —

random depends on the type addressing.

buzz@expliotable:~$ sudo hcitool leinfo --random E8:77:6D:8B:09:96
Requesting information ...

Handle: 70 (0x0046)

LMP Version: 4.1 (0x7) LMP Subversion: 0x64

Manufacturer: Nordic Semiconductor ASA (89)

Features: Ox01 Ox00 Ox00 Ox00 OxO0 OxO0 Ox00 OxOO

6. You will get basic information like the manufacturer of radio.

Reading and writing data

1. Once you got the MAC address of your device. Save it in a file. It will be useful.
2. To connect to a smart device's GATT server. We use a tool called as gatttool.
3. Using this command ” sudo gatttool -I -b <mac> -t random" you will get a CLI like this and

type ” connect” to it.

buzz@expliotable:~$ sudo gatttool -I -b E8:77:6D:8B:09:96 -t random
[E8:77:6D:8B:09:96] [LE]> connect

Attempting to connect to E8:77:6D:8B:09:96

Connection successful

[E8:77:6D:8B:09:96] [LE]> |}

4. Now you can see the characteristics and services running on the device by using “primary” ,

"characteristics” and "“char-desc” to see all the UUIDs running in the device

TR T LWL T WL T RN P T SRS R

[EB:77:6D:8B:09:96] [LE]> primary

attr handle: 0x0001, end grp handle: 0x0007 uuid: 00001800-0000-1000-8000-00805f
ggiifﬁandle: 0x0008, end grp handle: 0x000b uuid: 00001801-0000-1000-8000-00805f
ggiifﬁandle: 0x000c, end grp handle: 0x0011 uuid: c3e6feal-e966-1000-8000-be99c2
gigﬁﬁﬁandle: 0x0012, end grp handle: Oxffff uuid: 0000fee7-0000-1000-8000-00805f
?Eg?;g:ED:SB:BQ:BE][LE]} [|

e ————————————

T Nl R e S e LWL el N N el wd Bl e

[E8:77:6D:8B:09:96] [LE]> characteristics

handle: 0x0002, char properties: 0x0a, char value handle: 0x0003, uuid: 00002a00
-0000-1000-8000-00805f9b34fb

handle: 0x0004, char properties: 0x02, char value handle: 0x0005, uuid: 00002a01
-0000-1000-8000-00805T9b341b

handle: 0x0006, char properties: 0x02, char value handle: 0x0007, uuid: 00002a04
-0000-1000-8000-00805f9b34fb

handle: 0x0009, char properties: 0x20, char value handle: 0x000a, uuid: 00002a05
-0000-1000-8000-00805f9b34fb

handle: 0x000d, char properties: 0x10, char value handle: 0x000e, uuid: c3e6fea2
-e966-1000-8000-be99c223df6a

handle: 0x0010, char properties: 0x0c, char value handle: 0x0011, uuid: c3e6feal
-e966-1000-8000-be99c223df6a

handle: 0x0013, char properties: 0x12, char value handle: 0x0014, uuid: 0000feal
-0000-1000-8000-00805f9b34fb
[E8:77:6D:8B:09:96] [LE]> |}

6. Now you can read and write to these handles using " char-read-hnd <handle>” and " char-

write-req <handle> <data> " to read and write to it.

[E8:77:6D:8B:09:96] [LE]> char-write-req 6x11 AABB
Characteristic value was written successfully
[E8:77:6D:8B:09:96] [LE]> [

[EB:77:6D:8B:09:96][LE]> char-read-hnd 0x0003

Characteristic value/descriptor: 46 34
[FR:77-AN-8R-N0-0ATTI F1> B

7. Here the char properties give you the permission of the handle like Read, Write, Notify,

Indicate.

e M mAe R SRR RS LS e R MM LeRE RS AR) WS WA AR R e e e mA M AR R R e 4 Wes e sene

charactenstlc as defined by higher layer specifications, without regard to
security requirements.

Properties ‘ Value | Description

Broadcast 0x01 | If set, permits broadcasts of the Characteristic Value using
Server Characteristic Configuration Descriptor. If set, the Server
Characteristic Configuration Descriptor shall exist.

Read

Cx02 | If set, permits reads of the Characteristic Value using procedures
defined in Section 4.8

Write Without 0x04 | If set, permit writes of the Characteristic Value without response
Response using procedures defined in Section 4.9.1.

Write 0x08 | If set, permits writes of the Characteristic Value with response
using procedures defined in Section 4.9.3 or Section 4.9.4.

Motify 0x10 | If set, permits notifications of a Characteristic Value without
acknowledgment using the procedure defined in Section 4.10. If
set, the Client Characteristic Configuration Descriptor shall exist.

edgment using the procedure defined in Section 4.11. If set, the

Indicate Ox20 If set, permits indications of a Characteristic Value with acknowl-
Client Characteristic Configuration Descriptor shall exist.

Authenticated 0x40 | If set, permits signed writes to the Characteristic Value using the
Signed Writes procedure defined in Section 4.9.2.

Extended ‘ Ox80
Properties

If set, additional characteristic properties are defined in the Char-
acteristic Extended Properties Descriptor defined in Section

[EG:77:6D:8B:09:96] [LE]> char-desc

handle: 0x0001, uuid: 00002800-0000-1000-8000-00805T9b34fb
handle: 0x0002, uulid: 00002803-0000-1000-8000-00805T9b34fb
handle: 0x0003, uuid: 00002a00-0000-1000-8000-00805T9b34fb
handle: 0x0004, uuid: 00002803-0000-1000-8000-00805T9b34fb
handle: 0x0005, uulid: 00002a0l-0000-1000-8000-00805T9b34fb
Ihandle: 0x0006, uulid: 000O2803-0000-1000-8000-00805T9b34fb
handle: 0x0007, uulid: 00002a04-0000-1000-8000-00805T9b34fb
thandle: 0x0008, uuld: 00002800-0000-1000-8000-00805f9b34fh
handle: 0x0009, uuid: 00002803-0000-1000-8000-00805f9b34fb
‘handle: 0x00Pa, uuid: 0POO2a05-0000-1000-8000-0E805T9b34fh
handle: 0x000b, uuid: 00002902-0000-1000-8000-00805T9b34fb
handle: 0x000c, uulid: 00002800-0000-1000-8000-00805T9b34fb
handle: 0x000d, uuld: 00002803-0000-1000-8000-00805f9b34fb
handle: 0x000e, uuld: c3e6fea2-e966-1000-8000-be99c223df6a
handle: 0x000f, uulid: 00002902-0000-1000-8000-00805T9b34fb
handle: 0x0010, uuid: 00002803-0000-1000-8000-00805T9b34fb
handle: 0x0011, uuld: c3e6feal-e966-1000-8000-be99c223df6a
handle: 0x0012, uuid: 00002800-0000-1000-8000-00805T9b34fb
handle: 0x0013, uuid: 00002803-0000-1000-8000-00805T9b34fb
handle: 0x0014, uuid: 0000feal-0000-1000-8000-00805T9b34fb
handle: ©x0015, uuid: 00002902-0000-1000-8000-00805f9b34fh

—

10. You can enable notification by writing “01"” to the handle too

11.

[EB:77:6D:8B:09:96][LE]> char-write-req 0x0f 0100

Characteristic value was written successfully

Notification handle = Ox000e value: ba 30 00 06 00 24 00 00 Ga 00 ab 00 01 48
Notification handle = Ox000e value: ba 30 00 06 00 c5 00 00 Ga 00 ab 00 01 4c

[FR:77-AN-RR-NG-0R1TIF1> B
—

You can check our other blogs on how to reverse a Bluetooth communication of a smart

Imassager.

Continue to the next part - loT Security — Part 5 (ZigBee Protocol - 101)

Reference:

N

© 00 9 O uu P W

10.

https://www.nordicsemi.com/eng/News/ULP-Wireless-Update/A-short-history-of-

Bluetooth

. https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

https://www.bluetooth.com/specifications

https://learn.adafruit.com/introduction-to-bluetooth-low-energy/gatt

. https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch01.html

. https://en.wikipedia.org/wiki/Bluetooth Low Energy

. https://www.jaredwolff.com/blog/get-started-with-bluetooth-low-energy/

. http://object-network.blogspot.com/2014/01/scanning-ble-adverts-from-linux.html

. https://elinux.org/images/3/32/Doing_Bluetooth Low Energy on_ Linux.pdf

https://www.digikey.com/Web%20Export/Supplier%20Content/Laird_776/PDF/laird-

wireless-bluetooth-smart-ready.pdf

http://www.tcpdf.org

