
⌂ Home › ☷ All Blogs › ✍ Asmita-Jha ›

IoT Security - Part 18 (101 - Hardware Attack Surface: JTAG, SWD)

 Asmita-Jha

 14-October-2020

This blog is part of the IoT Security series, where we discuss the basic concepts about the

IoT/IIoT eco-system and its security. If you have not gone through the previous blogs in the

series, I will urge you to go through those first. In case you are only interested in hardware

JTAG, SWD, feel free to continue.

IoT Security - Part 1 (101 - IoT Introduction And Architecture)

IoT Security - 17 (101 - Hardware Attack Surface: UART)

If you are a beginner at hardware hacking and looking for some points to start with, this blog

series can help you. We discussed JTAG and SWD as a hardware attack surface in the IoT attack

surface blog here. In this blog, we will discuss them in detail. Along with their basic

introduction, we will discuss the possible attack scenarios, tools, and methods that you can use

to attack the device if you get access to the JTAG/SWD interface on the hardware. So, if you are

new to it and want to get started, stay tuned :).

Introduction

JTAG

JTAG (Joint Test Action Group), an industry-standard, was developed by the association, the

Joint (European) Test Access Group, in 1985. It was originally developed for verifying designs

and testing of printed circuit boards (PCB). Later in 1990, it was standardized as an IEEE

standard 1149.1-1990 as Standard Test Access Port and Boundary-Scan Architecture. Initially,

with the invention of integrated circuits, increasing complexity, higher density, and smaller

components, it was not easy to test the physical interconnections on PCB. JTAG boundary scan

came out as a solution to perform the testing and debugging of chips’ physical interconnection

by limiting physical access to just a few signals. Today, JTAG is used for many other

applications, including in-circuit debugging, giving access to directly communicate with the

memory/registers within the chip without direct external access to the system address or the

data bus, and for programming devices. The image below shows the architecture of the JTAG

chip (Source - here).

The JTAG chip consists of logic cells or boundary-scan cells that connect the chip to the PCB.

These can capture data from pin or core logic signals as well as send data onto pins. These logic

cells are accessed through a serial test data input (TDI) and test data output (TDO) interface.

The test controller’s primary interface that provides access to the logic is the Test Access Port

(TAP), consisting of 4 required signals and an optional reset signal.

TCK (Test Clk) - Test clock synchronizes the operations of the internal state machine. The

JTAG standard does not specify the actual clock speed.

TMS (Test Mode Select) - It controls the JTAG state machine. It is sampled at the rising edge

of the TCK to determine the next state of the state machine.

TDI (Test Data In) - Sends data into the chip. When the internal state machine is in the correct

state, it is sampled at the TCK’s rising edge.

TDO (Test Data Out) - Data coming out of the chip. When the internal state machine is in the

correct state, it is valid on TCK’s falling edge.

TRST (Test Reset : Optional) - Resets the TAP controller state machine.

As defined by the IEEE-1149.1 standard, the TAP controller uses a 16-state finite state machine

controlled by TCK and TMS signals. The state of TMS on the rising edge of TCK determines the

transition to the next state. Each JTAG TAP has an Instruction Register (IR) and a Data Register

(DR). The size of these registers is variable. The state machine selects the operations/

instructions via IR and passes the parameters or data update via DR. The detailed working of

the state machine can be read from the reference [1].

JTAG specification does not have the defined protocol for the connector design. JTAG

connectors can be found varying from 6, 10, 14, 16, 20, etc. numbers of pin interfaces. These

connectors can have extra signals apart from the 4 JTAG signals. as shown in the image below

(Source - Reference [1])

For communicating with the device via the JTAG interface, we would have to identify the 4 JTAG

signals TCK, TMS, TDI, and TDO that communicate with the JTAG chip state machine via TAP. It

is also possible to communicate with more than one JTAG chips by connecting them in daisy

chain as shown in the image below (Source - Wikipedia)

There is a reduced pin count JTAG called compact JTAG (cJTAG) that only has two pins, TMSC

(Test Serial Data) and TCKC (Test Clock). It is defined as part of the IEEE 1149.7 standard. JTAG

specification defines some mandatory boundary scan related instructions and some optional

instructions. However, the TAPs that are used for debugging applications instead of boundary

scan, generally provide minimal or no support for these mandatory instructions related to

boundary scan. The two important instructions are :

BYPASS - TDI and TDO are connected to a single-bit data register (also called BYPASS). This

instruction allows the device to get bypassed while allowing the serial data to go through the

next devices in the chain/scan path.

IDCODE - This is an optional instruction but used widely (not universally). It is related to a 32-

bit device ID register (IDCODE). It includes the chip ID i.e., the manufacturer code in the

standardized format.

After the reset state, IR is preloaded with BYPASS or IDCODE instruction. Such identification

can also help in identifying the kind of processor/microcontroller used in the chip. Other

instructions include EXTEST, SAMPLE, PRELOAD, HIGHZ, INTEST, CLAMP, RUNBIST, and

USERCODE. The devices provided by the manufacturer may define more instructions. JTAG

supports different architectures, including ARM, Atmel AVR, TI MSP430, FPGAs, MIPS, CPLDs,

etc.

SWD

SWD (Serial Wire Debug) provides the debug port by reducing the pin count to just two, the

bidirectional data signal (SWDIO), and a clock signal (SWCLK) sent by the host. It provides all

the normal JTAG debug and test functionality (it does not provide the boundary scan feature as

in JTAG). It uses an Arm standard bi-directional wire protocol, defined in the Arm debug

interface v5. It is a standard interface for ARM processor-based devices. It is useful where

limiting pin count is crucial. SWD uses a bus called Debug Access Port (DAP). DAP has one

master (Debug Port - DP) and one or multiple slaves (Access Ports - APs). The image below shows

the SWD architecture (Source - Reference 7).

The external debugger connects to DAP using the debug port (DP). There are three debug port

interfaces to access the DAP. * JTAG Debug Port (JTAG-DP) - It uses standard JTAG interface

and protocol * Serial Wire Debug Port (SW-DP) - It uses SWD protocol * Serial Wire / JTAG

Debug Port (SWJ-DP) - It can use either JTAG or SWD to access the DAP. In this, TCK and TMS

JTAG signals are reused as SWCLK and SWDIO signals, respectively. For switching from one

interface to the other, a specific sequence has to be sent.

SWD transaction has three phases. * 8-bit Request phase sent from the host * 3-bit ACK

(Acknowledgement) phase sent from the target. * Data phase where up to 32 bits are transferred

from/to the host with a parity bit. When the data direction has to be changed, TRN (Turnaround)

cycle is sent. The image below shows the SWD read transfer (Source - Reference 7).

More conceptual details about the JTAG and SWD interface can be read from the references

mentioned at the end of this blog. In the next sections, we will discuss the attack scenarios and

methods.

Possible Attack Scenarios

Getting access to the JTAG/SWD interface on the hardware opens many possibilities for an

attacker to break into the device. The following are the possible attack scenarios :

Attackers get access to the controller’s internal memory leading to the manipulation of the

register values. Manipulating the internal registers can have varying effects. For example, in

some cases, even if a controller read-protection is implemented, the adversary can manipulate

the register value, and there is a possibility of bypassing the protection implementation.

Similarly, the attacker could also change settings and bypass protection related to the

bootloader and other critical registers that the developer might have locked for security

aspects.

Having access to the hardware with the JTAG/SWD interface gives the attacker the possibility

of debugging the system. It may help him/her to unearth more vulnerabilities and perform

attacks on the device. For better understanding, you can refer to our blog, “Hardware Attack

- Stack Smashing And Protection”. Here you would get a glimpse of how the access to the

JTAG debug port on the hardware helped us identify a buffer overflow vulnerability leading to

RCE (remote code execution)

Another most significant advantage from the attackers’ perspective is that the access to

JTAG/SWD debug interface opens up the possibilities to extract the firmware from the device,

patch the firmware, and re-flash the modified vulnerable/malicious firmware back into the

device. Getting access to the firmware opens up vast possibilities for an attacker to catch and

exploit other vulnerabilities.

Performing the Attack

We first need to identify the respective port pins on the hardware to interact with the device via

JTAG/SWD port. Below are few images showing how most JTAG port test points/pinouts on the

hardware may look like.

(Source - here)

(Source - here)

Recon

You can refer to our blog, “IoT Security-Part 13 (Introduction to Hardware Recon)”, for a better

understanding of the hardware recon.

Case 1: You do not have the actual hardware, but you know the FCCID number of the device. Go

to the FCCID website, search for the FCCID number of the device. If correct, you will find all the

internal images and detailed internal, external information about the device. You may get a hint

for devices with JTAG/SWD interfaces on the hardware seeing the internal image. Yayy!! Once

you know that you have the attack surface, you can get/purchase that device and perform

further required steps to attack the device.

Case 2: You got access to the hardware. Once you have the physical hardware in your possession,

the first step should be to perform reconnaissance. Inspect each test point and chips present on

the printed circuit board (PCB) to look if you can get a JTAG/SWD interface.

As discussed above, for JTAG, we need to identify four signal pins (TCK, TDI, TDO, TMS) and Vcc,

GND pins. For SWD, we need two signal pins (SWDIO, SWCLK) and Vcc, GND pins. Few ways in

which you can identify these interface pins on the device are mentioned below :

1. Manual Identification - Identify the microcontroller used in the device, take out its datasheet,

and identify the microcontroller’s JTAG/SWD pins. For example, we will take the example of

EXPLIoT DIVA board.

The microcontroller used in the diva board marked as U7 on the PCB is STM32F411x, we can

search its datasheet for the pins having JTAG/SWD interface connection. The image below

shows that section of the datasheet.

Depending on the IC package that is used in the device (here its LQFP64), we identify the JTAG

port pins on the controller. Then, we set the multimeter in continuity mode as in the image

below :

Then, we put one probe on the JTAG port pins on the controller and the other probe on the test

points/ headers pins on the PCB suspected to be JTAG port pins. This test is repeated until pins

are identified. The procedure for identifying SWD pins is the same. Manual identification is

undoubtedly going to be hectic, but no worries; we have automation tools with us to solve this

problem :)

1. Automated Identification- Many available tools can help us scan and identify the JTAG/SWD

pins on the hardware.

EXPLIoT Bus Auditor - It supports JTAG, SWD, I2C, UART. It has an adjustable target

voltage. Its demo example in the case of JTAG and SWD interface can be understood

from our blog, “IoT Security-Part 14 (Introduction to and Identification of

Hardware Debug Ports)”.

JTAGEnum - It’s the oprn source project based on Arduino. It does not support UART,

and also it does not have the adjustable voltage. It is cheaper to use. Before connecting

pins to Arduino, make sure to adjust the voltage levels. You can refer to the blog here to

understand how to identify JTAG pins using JATGEnum.

JTAGulator - It supports JTAG, UART, SWD. It has an adjustable target voltage. You can

refer to the blog here to understand how to identify JTAG pins using JTAGulator.

** NB** : Before connecting any external device to the target board, make sure to adjust the

voltage levels and make the Ground common for both the attacking/scanning and the target

devices.

Yayy!! Once the JTAG/SWD interface pins are identified on the hardware, it is time to break into

the device.

Sniff the communication

Tools like Logic Analyzer can be used to sniff the communication between the device having the

JTAG/SWD interface and the controller. The logic analyzer would show the TCK, TDI, TDO, TMS

signal lines of the JTAG port or SWCLK , SWDIO lines of SWD port. Softwares like Saleae Logic

Analyzer, PulseView have the feature to detect these signals that directly shows you the

decoded data w.r.t the respective JTAG/SWD interface. Sniffing communication can help to

decode the IDCODE and other sensitive information.

Interfacing

To communicate with the JTAG/SWD interface on the device we need a protocol adapter and a

software that can communicate over JTAG/SWD via the adapter with the device. Keep note of an

important point again, ” Before connecting any external device/ adapter to the target board,

make sure to adjust the voltage levels and make the Ground common for both the

attacking/scanning and the target devices.” Various adapters are available for connecting with

JTAG/SWD interface. A few of them are mentioned below.

EXPLIoT Nano

Bus Pirate

Shikra

For communicating with JTAG/SWD interface with the host machine via these protocol

adapters, we need something that can take instructions from the user via the host machine and

send the corresponding low-level instructions to the respective JTAG/SWD interface via the

protocol adapter and vice-versa. Openocd: Open on-Chip Debugger is a debugging software

that provides on-chip programming and debugging support with a layered architecture of

JTAG/SWD interface and TAP support. It supports Debug target (e.g., ARM, MIPS): single-

stepping, breakpoints/watchpoints, etc. It has support for a variety of chips, interfaces, and

targets. It also opens GDB and telnet server. You can perform GDB debugging on the hardware

or communicate over telnet using openocd commands. To communicate with the respective

chip and the interface, we need to provide the correct configuration files w.r.t the chip and the

interface we are using. Below, we will show JTAG interfacing using EXPLIoT Nano on the target

EXPLIoT DIVA board.

After identifying the JTAG pins by any of the scanning tools/ methods discussed above, connect

the JTAG pins TCK, TMS, TDI, TDO with the corresponding JTAG pins on the adapter

(here,EXPLIoT Nano as per its datasheet/user manual). The connection image is shown below.

Now, to communicate with the JTAG interface, we need to launch the Openocd, $ openocd -f

expliot_nano_jtag.cfg.

** NB** - We pass configuration files to openocd to make it aware of the target microcontroller

and the debug adapter used. For a different microcontroller, adapter configuration, you might

need to choose the corresponding configuration files. More on openocd configuration files can

be read here The communication with the interface starts as in the image below.

Now, in another terminal, we will open telnet and perform different operations over the JTAG

interface. The link here describes in detail the commands for performing different operations

including, memory read, write, dump, etc. So, for example to extract the firmware the command

is , dump_image flash_dump.bin <address> <flash memory length>

We first need to identify the address and length of the flash memory of the chip that we are

using. As discussed above, EXPLIoT DIVA board has STM32F411x microcontroller. We check its

datasheet , we identified the flash memory address at 0x8000000 and length, 0x807FFFF –

0X8000000 = 7FFFF as shown in image below.

And via the telnet we send the following commands, * halt * dump_image flash_dump.bin

0x8000000 0x7FFFF * resume

It successfully extracts the firmware from the device, as shown below.

Thus, various openocd commands can be used to perform various operations, including

manipulating the register value, patching the firmware, etc. A similar approach would be for the

SWD interface, we just need to connect with the respective SWD pin, and corresponding SWD

transport should be mentioned in the configuration file. Thus, once we are successful in

interfacing and communicating with the JTAG/SWD ports, it opens the possibilities for various

attack scenarios, as discussed above. In our future blogs, we will perform these attacks on some

IoT devices, so stay tuned.

Conclusion

In this blog, we learned about the JTAG, SWD interface, the possibilities of attack scenarios, and

the methods to attack. We hope you enjoyed and got some valuable information out of it. These

tools and attack methods would give you a basic understanding of what to do when you find a

JTAG/SWD interface on the hardware and play around with it to attack some devices.

References

[1] https://blog.senr.io/blog/jtag-explained

[2] https://embeddedbits.org/2020-02-20-extracting-firmware-from-devices-using-jtag/

[3] https://en.wikipedia.org/wiki/JTAG

[4] https://www.corelis.com/educationdownload/JTAG-Tutorial.pdf

[5] https://developer.arm.com/architectures/cpu-architecture/debug-visibility-and-

trace/coresight-architecture/serial-wire-debug

[6] https://www.cnblogs.com/shangdawei/p/4748751.html

[7] https://research.kudelskisecurity.com/2019/05/16/swd-arms-alternative-to-jtag/

About Payatu

Payatu is a boutique security testing and services organization specialized in Products,

Application, and Infrastructure security assessments and deep technical security training. We

offer a full IoT ecosystem security assessment, including Hardware, Cloud, Web, and Mobile

interface. If you are looking for security testing services then let’s talk, share your

requirements: https://payatu.com/#getstarted

Payatu is at the front line of IoT security research, with a great team, and in house tools like

expliot.io. In the last 8+ years, Payatu has performed, security assessment of 100+ IoT product

ecosystems and we understand the IoT ecosystem inside out.

Get in touch with us. Click on the get started button below.

Get to know more about our process, methodology & team!

☷ All Blogs › ✍ Latest Blogs

Title

11/11/2020

Sandigo

Title

11/11/2020

Sandigo

Redirect

27/10/2020

Sandigo

GET STARTED TODAY

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

