
⌂ Home › ☷ All Blogs › ✍ Dattatray ›

IoT Security - Part 12 (MQTT Broker Security - 101)

 Dattatray

 30-August-2020

MQTT Broker Security - 101

This blog is part of IoT Security series where we discuss the basic concepts pertaining to the

IoT/IIoT eco-system and its security. If you have not gone through the previous blogs in the

series, I would urge you to go through those first. In case you are only interested in MQTT

broker security, feel free to continue.

IoT Security - Part 1 (101 - IoT Introduction And Architecture)

IoT Security - Part 11 (Introduction To CoAP Protocol And Security)

In this blog, we are going to look at Client Authentication and other security methods used by

MQTT broker for secure connections with MQTT clients

1 Introduction

MQTT protocol is becoming popular in many industries, it also fascinates IoT beginners,

enthusiast IoT developers, and security researchers who want to explore this technology for new

opportunities.

If you are new to MQTT and want to understand more about the protocol, please go through our

blog on MQTT Protocol and Security.

IoT Security - Part 10 (Introduction To MQTT Protocol And Security)

There are many open-source and commercial implementation for MQTT Broker and client

available to choose from. But before using any MQTT implementation of MQTT broker, one must

understand the security capabilities of MQTT broker and clients.

This blog articulates the information required for beginners to start working on security of

MQTT protocol and security capabilities required for MQTT Broker and client.

We are using Eclipse Mosquitto Broker to understand broker configuration and how to

configure the Mosquitto broker for desired security mode. We will also look into AWS IoT Core

for similar feature and configuration.

2 Data and Connection Security

2.1 Secure Connection

As per MQTT specs TCP ports 8883 and 1883 are reserved for MQTT TLS and non TLS

communication respectively.

In non TLS communication i.e. on port 1883, MQTT messages are transferred in plain-text

format between MQTT broker and client and should be considered as an unsecure connection.

Whereas in TLS communication or secure connection i.e on TCP port 8883, MQTT messages are

encrypted by TLS security layer before transmission.

It is always a good idea to use secure communication between MQTT broker and client.

2.1.1 Mosquitto Broker

Mosquitto Broker provides an option in mosquitto.conf file to select listener port for MQTT

connection, default value is 1883. It should be changed to 8883 for secure (TLS) communication.

This is just the first step and you still need to configure broker for using certificates to make it

work.

2.1.2 AWS IoT Core

AWS IoT core by default uses TLS connection for MQTT on port 8883

2.2 Application data or MQTT Payload security

MQTT protocol is messaging protocol and does not provide any encryption for the application

payload it is carrying. It is responsibility of the application to encrypt/decrypt application data

(payload) before sending to or after receiving from the MQTT layer to achieve end to end data

Port to use for the default listener.

port 8883

encryption. Please note that application level encryption is independent of TLS packet

encryption.

3 Client Authentication

For any MQTT broker, there are three types of client authentication methods available to verify

the identity of MQTT client 1. Client Identifier (Client Id) 2. Username and Password 3. Client

Certificates

3.1 Client Identifier (Client Id)

All MQTT clients must have a unique Client Id as per the MQTT Spec, and the client must send

this Client Id with the CONNECT packet. The broker uses this Client Id to create and maintain

the session state.

The Client Id is not part of MQTT authentication and is only used to uniquely identify the MQTT

connection. However, some broker implementations provide some way to establish client

identity using Client Id or something derived from Client Id. However, using client ID alone for

authentication or verification is a bad idea because it can be manipulated/spoofed at the client

side.

We will see how Mosquitto Broker and AWS IoT Core use client id for basic security in following

examples

3.1.1 Mosquitto Broker

Mosquitto Broker provides an option called clientid_prefixes in mosquitto.conf file to configure

Client ID prefixes, which allow clients with specified prefixes in their Client ID to connect to the

mosquitto broker.

Here in above example, clientid_prefixes is set to C_ID- and a client with client id let’s say

C_ID_Client01 will be allowed to connect, but a client with the Client ID Client01 will not be

allowed to connect.

3.1.2 AWS IoT Core

AWS IoT provides the option to set thing id while creating thing in IoT core, here thing id is not

the same as Client ID. However, AWS IoT allows connection for registered thing when

connection policy is configured for the corresponding thing id.

===

Security

===

If set, only clients that have a matching pre x on their

clientid will be allowed to connect to the broker. By default,

all clients may connect.

For example, setting "secure-" here would mean a client "secure-

client" could connect but another with clientid "mqtt" couldn't.

clientid_pre xes C_ID-

Note: If the client with client id as client_1 is connected and the second client with the same

client id i.e. client_1 is trying to connect the broker, then the first client is disconnected by

the broker. This is the bare minimum security provided for any client session by MQTT

protocol and keeps a client with intermittent connectivity from spawning multiple MQTT

sessions. However, as discussed in our previous blog post on MQTT, it also opens the door

for Denial of Service attacks on the MQTT network.

3.2 Username and Password

MQTT spec defines the requirement of a username and password for MQTT client

authentication. A client sends the username and password with the CONNECT packet to the

MQTT broker and the broker validates the username and password before accepting the MQTT

session.

The username and password is sent in the CONNECT packet to the broker in cleat text format

unless encrypted at the transport layer i.e. using port 8883 for connection.

Note: According to the MQTT spec it is not mandatory to use authentication.

3.2.1 Mosquitto Broker

Mosquitto Broker provides two parameters in mosquitto.conf file to enable client authentication

by client - username and password.

3.2.1.1 Allow Anonymous

(Please provide a sentence explaining what is allow anonymous) To enable client authentication

using credentials, you also need to set allow_anonymous parameter to false in mosquitto.conf

file.

3.2.1.2 Password file Path

To create a password file, the mosquitto broker comes with mosquitto_passwd utility which

creates a password file.

Example:

a. Create/append password file and add user john with hashed password

b. Delete a user from a password file

Defaults to true if no other security options are set. If `password_ le` or

`psk_ le` is set, or if an authentication plugin is loaded which implements

username/password or TLS-PSK checks, then `allow_anonymous` defaults to

false.

allow_anonymous false

$ sudo mosquitto_passwd -c /etc/mosquitto/pw le john <somepassword>

$ sudo mosquitto_passwd -d /etc/mosquitto/pw le john <somepassword>

Once password file has been created, set the current location of password file using

password_file parameter in mosquitto.conf file.

Note: The default location of the mosquitto password file for Linux is /etc/mosquitto/pwfile

and for windows is the mosquitto installation folder ~\mosquitto\passwords.txt

3.2.2 AWS IoT Core

AWS IoT core does not support username and password authentication but it provides option

for custom authentication.

Note: Another use of username is to allow or deny topic access to clients based on their

username, we will see it in following section 4.1.3.2

3.3. Client SSL Certificate

Considered as the most secure method of client authentication, in certificate-based

authentication client sends an SSL certificate which is signed by a trusted root CA to the server

to authenticate the client.

3.3.1 Mosquitto Broker

Mosquitto broker provides below options in mosquitto.conf file to enable certificate-based client

authentication.

3.3.1.1 Client Certificate require

When require_certificate is set to true, MQTT clients that provide valid certificate during

connection handshake are allow to connect.

3.3.1.2 Root CA file Path

The cafile or capath must be set to a trusted CA certificate that has signed your server

certificate, to enable certificate-based client authentication.

See the TLS client require_certi cate and use_identity_as_username options

for alternative authentication options. If an auth_plugin is used as well as

password_ le, the auth_plugin check will be made rst.

password_ le /etc/mosquitto/pw le

By default an TLS enabled listener will operate in a similar fashion to a

https enabled web server, in that the server has a certi cate signed by a CA

and the client will verify that it is a trusted certi cate. The overall aim

is encryption of the network tra c. By setting require_certi cate to true,

the client must provide a valid certi cate in order for the network

connection to proceed. This allows access to the broker to be controlled

outside of the mechanisms provided by MQTT.

require_certi cate true

3.3.1.3 Server Certificate and keyfile Path

The certfile is requested by MQTT client for server authentication during TLS handshake.

3.3.2 AWS IoT Core

AWS IoT core uses x.509 certificate-based authentication as default client authentication

method.

Read more about AWS IoT client authentication here.

4 Restrict access to server resources

Every MQTT broker must have some access control mechanism to restrict MQTT clients from

accessing server resources based on information provided by the client such as User Name,

Client Identifier, the hostname/IP address of the client, or the outcome of authentication

mechanisms.

4.1 Mosquitto Broker

Mosquitto broker has a mechanism called an access control list or ACL for MQTT topics, ACL is

used to control the client access to subscribe and publish to topics on the broker. User name or

Client ID is used to restrict access to broker topics.

The acl_file parameter in mosquitto.conf is a path to a file that contains an access control list.

Valid file path enables ACL for topic restriction.

At least one of ca le or capath must be de ned to enable certi cate based

TLS encryption. They both de ne methods of accessing the PEM encoded

Certi cate Authority certi cates that have signed your server certi cate

and that you wish to trust.

ca le de nes the path to a le containing the CA certi cates.

capath de nes a directory that will be searched for les

containing the CA certi cates. For capath to work correctly, the

certi cate les must have ".crt" as the le ending and you must run

"openssl rehash <path to capath>" each time you add/remove a certi cate.

ca le /etc/mosquitto/certs/ca.crt

#capath

Path to the PEM encoded server certi cate.

cert le /etc/mosquitto/certs/server.crt

Path to the PEM encoded key le.

key le /etc/mosquitto/certs/server.key

If an auth_plugin is used as well as acl_ le, the auth_plugin check will be

made rst.

acl_ le /etc/mosquitto/acl le

Note: Location of default ACL file i.e aclfile.example for linux is

/usr/share/doc/mosquitto/examples/aclfile.example and for windows it is the mosquito

installation folder ~\mosquitto\aclfile.example

Default content of aclfile.example file

There are three types of rules by which ACL is established and saved in acl_file

4.1.1 topic name

This rule uses the topic keyword and is applicable to all anonymous clients. If a client uses

credentials for the connection then this rule is ignored for that client.

Below is the format used to define this rule -

Example:

Below line gives read (subscribe) access to any anonymous client and access to any other

topic would be denied.

4.1.2 user name

This rule uses the user keyword and is for the clients that use user credentials for the

connection. Below is the format used to define this rule -

Here the username is the same as in the password file

 # This a ects access control for clients with no username.

topic read $SYS/#

This only a ects clients with username "roger".

user roger

topic foo/bar

This a ects all clients.

pattern write $SYS/broker/connection/%c/state

topic [read|write|readwrite] <topic>

topic read $SYS/#

user <username>

topic [read|write|readwrite] <topic>

Example:

Below lines gives read (subscribe) and write (publish) access to topic foo/bar to a client with

user name roger and ignored for other clients.

4.1.3 pattern substitution with the topic

This rule uses the pattern keyword. Using pattern substitution with the topic, a broker allows

access to a client using its client id or username.

Below is the format used to define this rule -

Note: As per Eclipse Mosquitto documentation following patterns are available for

substitution

1. %c to match the client id of the client

2. %u to match the username of the client

The following line is default entry in the ACL file and grants write (publish) access to all clients.

4.1.3.1 Client ID substitution

Following example will illustrate how to use client id substation for topic access

Example:

Below line allow read access to topic pattern write sensor/<clientid>/data to all clients

Below line will allow write access to client with client id c1 to access this topic and denies

access to all other clients

4.1.3.2 User name substitution

Following example will illustrate how to use username substation for topic access

user roger

topic foo/bar

pattern [read|write|readwrite] <topic>

pattern write $SYS/broker/connection/%c/state

pattern write sensor/%c/data

pattern write sensor/c1/data

Example:

Below line allow read access to topic user/<username>/logintime to all client

Below line will allow read and write access to the topic user/john/lastlogin to user john

4.2 AWS IoT Core

In AWS IoT, permissions to access the broker’s resources are controlled by AWS IoT Core

policies. Read more on AWS IoT Core policies here.

5 Certificate Revocation List

Though certificate based authentication is considered as most secured, certificate once issued,

it cannot be modified and controlling one’s access when it is not expired is a challenge. And then

there are scenarios where certificates form cloned or decommissioned devices, are used to get

system access.

To avoid such scenarios, Certificate Revocation List (CRL) are issued by certificate authority CA.

It contains information of the revoked certificates from decommissioned or compromised

devices that no longer be trusted and prevent from any future use.

5.1 Mosquitto Broker

The CRL file is must when certificate-based client authentication is used i.e. require_certificate

set to true. It contains information of the revoked certificates from decommissioned or

compromised client devices to prevent any future use.

You can use the crlfile parameter from mosquitto.conf to point to the PEM encoded revocation

file.

5.2 AWS IoT Core

Using AWS IoT console, the user can deactivate or revoke the client certificates. Read more on

client certificate activation or deactivation here.

6 Conclusion

pattern read user/%u/logintime

pattern read | write user/john/lastlogin

If you have require_certi cate set to true, you can create a certi cate

revocation list le to revoke access to particular client certi cates. If

you have done this, use crl le to point to the PEM encoded revocation le.

crl le /etc/pki/mosquitto/content/crl/mosquitto_crl.pem

There are serval security mechanisms available out there to secure MQTT communication and it

varies from implementation to implementation. These security mechanisms implemented at the

MQTT broker side, correct configuration of MQTT broker and MQTT client reduce the attack

surface in an IoT ecosystem and give a better edge over known attacks. We hope this blog post

gave you a good insight about the security mechanisms used to secure MQTT connection

between a broker and a client.

Continue to the next part - IoT Security-Part 13 (Introduction To Hardware Recon)

7 References

Mosquitto broker configuration file

mosquitto_passwd utility

Configure SSL/TLS support for Mosquitto

Security in AWS IoT

Get to know more about our process, methodology & team!

☷ All Blogs › ✍ Latest Blogs

Title

11/11/2020

Sandigo

Title

11/11/2020

Sandigo

27/10/2020

Sandigo

GET STARTED TODAY

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

